Journal of Network and Computer Applications 100 (2017) 35-55

Contents lists available at ScienceDirect

s

NE DRK
COMPUTE!
APPLICATION

&
R
S

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Review

A survey: Hybrid SDN
Sandhya®, Yash Sinha, K. Haribabu

BITS, Pilani, Department of Computer Science and Information Systems, Pilani Campus, India

@ CrossMark

ARTICLE INFO ABSTRACT

A full deployment of Software Defined Networking (SDN) paradigm poses multi-dimensional challenges viz.,
technical, financial and business challenges. Technical challenges of scalability, fault tolerance, centralization
guarantees exist. Financial challenges of budget constraints, non-availability of phased transition model exist.
Business challenges like acceptability, building confidence among network operators etc. exist. Therefore, a
direct and sudden transition from legacy networks to pure SDN seems unlikely. A hybrid deployment of SDN
can be one of the plausible intermediate paths, primarily because it provides an environment where both legacy
and SDN nodes can work together. Thus, an incremental deployment strategy can be developed. Further, hybrid
SDN can enforce the benefits of both the traditional networks and SDN paradigm. Hybrid SDN deployment has
many advantages including adaptability to budget constraints, central programmability of the network, fallback
to time-tested legacy mechanisms and so on. But there are challenges specific to hybrid models, like added
complexity of running multiple paradigms together, realizing cooperation between control planes, etc. We
envision that more research work is needed to maximize the benefits and limit the drawbacks.

In this paper, we present a comprehensive survey of hybrid SDN models, techniques, inter-paradigm
coexistence and interaction mechanisms. Firstly, we delineate an overview of hybrid SDN roots and
consequently we discuss the definition, architectural pillars, benefits and limitations of hybrid SDN. Further,
we categorize the different models under various headings, that can be used for deploying hybrid SDN. Next, we
do a comparative analysis of each model. We discuss implementation approaches in each model and challenges

Keywords:

Hybrid SDN

Incremental deployment
Software-defined networking
OpenFlow

Network controller

Network Operating Systems
Network Hypervisor
Software-defined environments

that may arise in the deployment of hybrid SDN.

1. Introduction

Modern-day communication networks which are based on distrib-
uted control and network transport protocols pose a lot of complex
operational issues (Levin et al., 2014; Casado et al., 2007, 2006; Qazi
et al., 2013). Although the traditional® IP networks have been adopted
widely, they are complex and hard to manage (Benson et al., 2009). A
number of issues such as policy enforcement on wide variety of boxes
(devices), high performance in terms of connectivity, robustness and
fault tolerance, application and user aware routing, complex traffic
isolation etc. have led to creation of many overlapping mechanisms at
various network layers which make the management cumbersome and
even prone to failure and security loopholes.

To add fuel to the fire, the forwarding and control mechanisms exist
within the same network device and are tightly interwoven, known as
vertical integration (Kreutz et al., 2015). Each device has vendor
specific properties, due to which, deployment of another device in the
network may lead to incompatible interfaces. Enabling interoperability

* Corresponding author.

requires reconfiguration of the existing devices, which often becomes
buggy if done manually. This vertical integration and vendor specificity
(Boucadair and Jacquenet, 2014) hinders flexibility and hampers
innovation in network infrastructure evolution. The transition from
IPv4 to IPv6 is a testimony to this. This inertia of current networks (i.e.,
lack of configuration automation methods and response mechanisms)
leads to a lot of management efforts, especially where the network
changes are frequent (Jammal et al., 2014).

As the demand for real-time applications is increasing, it has
become difficult to scale the existing networks and provide reliability
and security without degradation of performance. Due to the presence
of various technologies and stakeholders, generally, the approaches in
the traditional network aim for better user experience for a few services
or enhancing link utilization for a subset of networks. These ap-
proaches although aim to obtain optimal performance use local
information, without cross-layer considerations, and thus lead to
sub-optimal performance (Xia et al., 2015; Pathak et al., 2011).
Network management issues are diverse, and the changes required in

E-mail addresses: p2015007 @pilani.bits-pilani.ac.in (Sandhya), h2016077@pilani.bits-pilani.ac.in (Y. Sinha), khari@pilani.bits-pilani.ac.in (K. Haribabu).

URL: http://universe.bits-pilani.ac.in/pilani/khari/profile (K. Haribabu).
1 We use the terms legacy and traditional interchangeably.

http://dx.doi.org/10.1016/j.jnca.2017.10.003

Received 25 March 2017; Received in revised form 4 August 2017; Accepted 3 October 2017

Available online 06 October 2017
1084-8045/ © 2017 Elsevier Ltd. All rights reserved.

http://www.sciencedirect.com/science/journal/10848045
http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2017.10.003
http://dx.doi.org/10.1016/j.jnca.2017.10.003
http://dx.doi.org/10.1016/j.jnca.2017.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2017.10.003&domain=pdf

Sandhya et al.

the network are unpredictable. For example, different topology and
address spaces require data link layer or network layer services or even
more complex L4-L7 services (transport, session, presentation and
application layers). In such a dynamic environment, it is difficult to
enforce the required policies (Kreutz et al., 2015).

The emerging “Software Defined Networks” paradigm has the
potential to address these issues by simplifying the present state of
network architecture (Kreutz et al., 2015). SDN provides a new
architecture which stands on five pillars of (i) control and data plane
separation, (ii) central control and manageability, (iii) network pro-
grammability, (iv) flexibility in terms of flow abstraction with agility
and (v) vendor neutrality. Firstly, the routing devices in the SDN
paradigm are only meant to forward the packets, whereas the network
control logic is centralized at the network controller/operating system.
This breaks the vertical integration. Secondly, the centralized controller
can configure, manage, secure and optimize network resources dyna-
mically (Kim and Feamster, 2013). Further, a centralized controller
enables network programmability thus, network management can be
automated via programs. With the global view of the network and flow
abstraction, the network traffic can be dynamically adjusted. SDN
advocates open standards and vendor neutrality which further boosts
innovation and adoption. The controller exercises control over the
forwarding elements via OpenFlow protocol. The OpenFlow protocol
(Ben et al., 2012) for communication between the forwarding devices
and the controller has gained popularity and deployments at different
scales have been carried out.

The SDN paradigm despite having such benefits is facing multi-
dimensional challenges viz., technical, financial and business which
have affected the adoption of SDN as full deployments. Technically,
there are many questions to be answered such as how scalable, resilient
and robust can the centralized controller be without becoming the
single point of failure. As the network grows, it may require more than
one SDN controller. In terms of security, SDN controller is an attractive
target for attack (Sezer et al., 2013). In the absence of a secure and
robust controller, the attackers have the opportunities to change the
behavior of underlying network by making changes in the controller
code. A great focus on SDN security is required to make it acceptable.
Till now, there are a few discussions on SDN security in industry and
research community and potential vulnerabilities exist across the SDN
platform. For example, authentication and authorization mechanisms
have been questionable to enable multiple organizations to access
network resources while providing the appropriate protection of these
resources (Hartman et al., 2013). Among financial challenges, the huge
budget investment required for SDN deployment is of concern which
most of the organizations cannot afford in one go. This new paradigm
requires the network administrator to define a new set of policies and
provide the paradigm's implementation in the (perhaps new) hardware
devices. Neither there are well tested and production grade strategies
available as of now, that can be used for incremental deployment. As
far as business challenges are concerned, the transition might cause a
disruption in the services for the end users. Among the network
operators, there is a need to build confidence for adoption of new
paradigm over the well-running, time-tested traditional paradigm.

In this work, we survey how combining SDN and traditional
architectures, known as hybrid SDN models, can propose a solution
for a smooth transition. An environment, where both legacy” and SDN
nodes can work together, has the potential to extract the benefits of
both, while mitigating their drawbacks. In fact, many of the solutions

2 In this document, we refer to switches that can talk to the SDN controller via the
OpenFlow protocol as SDN switches or SDN nodes. These devices are forwarding
elements responsible for processing and forwarding packets in the data plane. On the
other hand, other network elements such as routers and switches that do not support
OpenFlow, and part of the traditional network are referred to as legacy nodes or SDN-
incompatible devices. They contain the legacy distributed control plane as well as the
data plane and understand the legacy protocols.

Journal of Network and Computer Applications 100 (2017) 35-55

developed traditionally can address challenges in SDN. For example,
increased latency due to the communication delay between the switch
and the controller can be mitigated by deferring decision making
partially to the legacy control plane, reacting quickly in an emergency,
such as failures, etc. On the other hand, the controller having the global
view of the network can tweak the weights of local routing mechanisms
to enhance the traditional way of managing things. An incremental
deployment strategy can be developed to meet the financial and
business needs of various organizations.

We begin by defining the contexts in which the term hybrid is used
and what do we mean by a hybrid SDN architecture. We emphasize
various pros and cons and then describe the different theoretical
models that have been proposed to realize hybrid SDN. We discuss
the work done in each approach, their advantages and disadvantages
and do a comparative analysis. We further discuss the implementations
and their evaluations carried out by the academia and the industry. We
throw light on hybrid SDN specific issues and how they have been
addressed by various researchers. To the best of our knowledge, this is
the first survey paper on hybrid SDN.

2. The hybrid SDN paradigm
2.1. What is hybrid SDN?

Hybrid SDN refers to a networking architecture where both
centralized and decentralized paradigms coexist and communicate
together to different degrees to configure, control, change, and
manage network behavior for optimizing network performance and
user experience. For example, traditionally switches with their dis-
tributed algorithms such as IGP (Interior Gateway Protocol) try to
control overall traffic routing whereas, in SDN, the controller routes
traffic based on the global view. If these are combined, say a part of
traffic is under traditional control and the remaining under the SDN
controller, we get a hybrid SDN architecture.

The main pillars of hybrid SDN architecture are 3C's:

1. Coexistence: As the name suggests, this implies a heterogeneity in
the infrastructure either in the data plane or the control plane or
both. Components of both SDN and the legacy paradigm stand
together in the network, although they may or may not interact
together (see Communication). Strategic placement of SDN nodes
gives rise to various incentives for a transition. Different placement
strategies form the attributes of this pillar.

(a) Coexistence at the Data plane only, i.e., SDN and legacy nodes®
together exist in the network, but managed by the distributed
control plane of the legacy paradigm only. Although this setup is
possible, it provides little benefit as managing SDN nodes with
legacy control offers no advantage. Therefore, in Fig. 1 we
provide no classification for “Co-existence in the Data Plane
Only”.

(b) Coexistence at the Control plane only, i.e., centralized SDN
control and decentralized legacy control both prevail in the
network. For example, Caesar et al. (2005) propose a routing
controller which provides a consistent assignment of routes for
external traffic with the help of a global topology view. The
routers pull the routes for external traffic from this controller,
but the controller does not interact with the legacy control. This
is coexistence without any communication. See 2b for coex-
istence with communication.

(c) Coexistence at both data and control planes. Here, the network
contains both SDN and legacy components, both in the control
plane (SDN controller and distributed legacy control) as well as

3 A node refers to a data plane component, also known as forwarding element (FE) in
SDN contexts such as a router or a switch.

Sandhya et al.

Journal of Network and Computer Applications 100 (2017) 35-55

Network
Management
Legacy Hybrid SDN SDN
Co-existence in Co-existence in
Control Plane Only Control & Data Plane
Controller SDN &) . 5
Only non-SDN islands Edge Placements With Middleware With Upgrade/Agent SDN Overlay

Fig. 1. Classification based on architecture and components.

the data plane (SDN and legacy nodes). For example,
Telekinesis (Jin et al., 2015) introduces a mechanism to control
the routing in legacy devices with OpenFlow protocol in a hybrid
network.

2. Communication: Communication conveys the idea of inter-para-

digm integration with mutual understanding and sharing & distri-

buting of functionality among fundamentally heterogeneous compo-

nents of the network. SDN and legacy components not only co-exist
but also interact with each other and understand the interfaces and

the protocols of each other to enhance each other. This involves a

number of techniques like protocol translation, SDN nodes stealing

the legacy (control) packet away to the controller, parsing packets,
packet injection from the controller to the network and so on.

For example, the SDN controller may help with the global
topological view, whereas the local legacy control in the node may
take fast local decisions even when the node-SDN controller link is
congested. Sometimes communication is crucial. For example, in a
network having a legacy and SDN switches, it is not possible to have
a loop-free Layer-2 network unless both understand STP (spanning
tree protocol) protocol. Hence, this is an important pillar.
Communication can be realized at different planes:

(a) Communication at the data plane only, i.e., SDN and legacy
nodes exist together and they understand each other. For
example, an SDN switch understands legacy protocols such as
STP, RapidSTP, LLDP (Link layer discovery protocol) etc. used
by legacy switches to function together. A setup only with this
feature is of a little practical advantage unless there is some
communication at the control plane.

(b) Communication at the control plane only. Here the SDN
controller understands the traditional distributed control such
as advertisements of OSPF (open shortest path first) in order to
discover network topology or to improve routing performance.
For example, in Fibbing, Tilmans et al. (2016) introduce an SDN
controller that functions together with the distributed control
plane of the legacy paradigm to alter routing decisions with the
help of fake OSPF LSAs (link-state advertisements).

(¢) Both data and control planes. In this scheme, both the control
planes and data planes interact with each other with various
degrees of protocol translation.

. Crossbreeding: Crossbreeding involves intermixing different para-
digms whose complementary attributes enhance the hybrid network.
Here, crossbreeding indicates the degree of hybridization in terms of
the following attributes that dictates architectural trade-offs. For
example, there can be a trade-off between the number of features of
a legacy protocol the SDN controller may parse and interpret versus
the performance of the controller. Similarly, as the number of SDN
nodes increase in the data plane, more traffic comes within SDN

particular implementation to be chosen by an organization for

deployment.

(a) Investment & budget constraints in transition. This refers to the
cost incurred in terms of hardware costs (for introducing a new
SDN controller, SDN nodes, middleware, etc.), custom software
creation and up-gradation etc. Often budget for purchasing new
network hardware is constrained within an organization and
therefore, a transition strategy which incurs less cost may be
preferred.

(b) Transition smoothness in incremental deployment. This is an
indicator of the degree of disruption of services that happens
when the transition is made from legacy to hybrid SDN. There
are many factors which determine whether and for how much
time the organization can afford to disrupt services. Some of
them are the current setup of the network, incentive to transi-
tion, end-user experience, the loss incurred during downtime,
security etc.

(¢) Ease of automation. The network is easy to automate if it is easy
to carry out network-wide forwarding at the data plane for
various kinds of traffic using software logic. With network
programmability, in pure SDN it is easy to achieve this via
central network logic. A hybrid network supports this quick,
dynamic and automated packet forwarding up-to a limited
degree. A complex configuration is less likely to be chosen as
it is difficult to administer and debug. An organization may
choose to enable network programmability for a particular
service or traffic class initially, which will lead to a particular
transition strategy.

(d) Policy expressiveness and enforcement. A hybrid network
supports flow abstraction and dynamic adjustment of network-
wide traffic flow in a limited way because the added complexity
in the data plane makes policy expression and enforcement
difficult. Traffic steering* and middle-boxing dictate and limit
how easy it is to express policy for a traffic flow and implement it
by installing routing entries.

(e) Scalability and robustness. This deals with the ability of the
architecture to handle growing network size and failures which
requires scaling of computing, storage, and network resources.
The added complexity of multiple paradigms in hybrid SDN may
make scalability a challenging aspect. It also becomes prone to
conflicts and failures. For example, the number of services that
SDN paradigm chooses to offer depends on the number and
placement of SDN nodes. If more SDN nodes are placed at
strategic locations, a service like load balancing can easily scale

4 The traffic steering problem aims to find an optimized physical path when a flow has

to be instantiated in the network. The aim is to optimally allocate a path in the network
for the current request, that accommodates the maximum number of total requests in the
long run (Cao et al., 2014).

control, although this increases the budget for the organization
(Levin et al., 2014). Therefore, these often act as parameters for a

37

Sandhya et al.

up. Similarly, recovery mechanisms provided by the SDN
controller can be more effective, if the SDN controller can
monitor the network precisely. This is less likely to happen if
only a few SDN nodes are placed to steal network packets to the
SDN controller.

We explain coexistence and communication in detail in Section 3
and crossbreeding in Section 4 for specific SDN models.

2.2. Benefits it promises

The specific advantages of the approaches to the hybrid SDN
paradigm have been mentioned in their corresponding sections. We
present here an overview.

1. Hybrid SDN enables SDN-specific features (such as centralized
control of the network) coupled with benefits of legacy (such as
low deployment costs and time tested-maturity). Therefore, it can
give the best of both. For example, in a traffic class-based hybridiza-
tion model, the policy expression at a high level becomes easy.
Hybrid SDN provides the feature to fallback to time-tested legacy
mechanisms in case of SDN controller failure, which is not available
in pure SDN paradigm.

2. There are areas where a combination of centralized and decentra-
lized mechanisms function well. Update or installation of a large
number of rules in the devices centrally could be a problem in pure
SDN (due to control channel clogging, congestion, the processing
capacity of controller etc.). Using both central and distributed
control in the same environment, we can overcome this problem.
If the communication with the controller is congested or the
controller is unable to respond due to lots of loads, the switch can
use distributed legacy routing mechanisms in the meantime to route
crucial packets. By providing a central control over critical traffic
only, overhead on the controller is reduced and the controller's
scalability can be increased. On the contrary, in pure SDN there has
been a lot of work going on to realize a hierarchical model of
controllers to guarantee centralization with scalability for large
networks Fu et al. (2014).

3. Architectural tradeoffs can be tuned to cater to the needs of an
organization. For example, based on whether the organization wants
to initially incentivize and accommodate the premium users or to
enhance telecom billing, there can be different proportion in which
the traffic can be controlled either by SDN or non-SDN paradigm.
This can be tuned based on the specific needs of the organization.

4. There are economic and business benefits like gradual investment,
building the confidence of network operators and end users etc.

2.3. Limitations

Different implementation approaches have different drawbacks but
in general, we list the following disadvantages of hybridization.

1. Management of heterogeneous control plane is difficult. Due to the
interaction between multiple control planes, the network update
procedures may not be safe (Vissicchio et al., 2014b). Anomalies
may occur in the reconfiguration process. For example, due to
control-plane conflicts, an update might trigger forwarding incon-
sistencies. This can further lead to forwarding loops and traffic black
holes. Establishing a communication session between the SDN
controller and the legacy switch is challenging. Several alternatives
to middleware, protocol translation, software upgrade, etc. exist
which provide different advantages and disadvantages. For example,
parsing IGP's advertisements such as OSPF LSAs in the controller
for topology discovery takes huge overhead on the controller. The
controller cannot support parsing of all legacy protocols as not all
protocols can be translated into each other.

38

Journal of Network and Computer Applications 100 (2017) 35-55

2. There is added complexity in the data plane. For example, realizing
heterogeneity with a heterogeneity adaptation layer such as a
middleware to translate legacy protocols back and forth increases
latency and processing time. Further, introducing a middleware
requires fixing security issues in the middleware, replication for
failure guarantees, extra processing power etc. If the reconfiguration
of legacy devices is done via manual intervention, that could lead to
an inappropriate or error-prone deployment of the hybrid SDN
system, similar to legacy networks.

3. There are specific issues such as controller scalability, fault toler-
ance, traffic engineering etc. The controller can only control a limited
number of devices, although more in hybrid SDN because of the
overhead of interoperability. Thus, incremental deployment of SDN
nodes requires more SDN controllers and this could increase the
latency. They need to exchange information about the legacy devices
and the program states using the east-west bound interfaces. Traffic
Engineering (TE) optimization is more challenging in hybrid SDN as
not all nodes support flow abstraction, OpenFlow, all packet match-
ing and packet filtering mechanisms etc. Solutions using ACLs
(access control list) or static routes provide limited functionalities
He and Song (2015).

2.4. Probable contextomy

Within the context of SDN, the term “hybrid” has been used to
indicate multiple meanings, such as heterogeneity, bilingualism and
decision delegation. We have used the term “hybrid” to convey the
hybrid SDN paradigm. We take this opportunity to clarify what we are
proposing and not the following meanings.

2.4.1. Dual stack mode (hybrid switch)

A dual stack switch is a bilingual device that can support both
OpenFlow protocol and legacy protocols within the same network
device (Kandoi, 2015). In this context, the term “hybrid” refers to a
single switch with OpenFlow on one VLAN (virtual LAN) and legacy
forwarding on another VLAN. These devices are known as “hybrid
devices” with “hybrid Port Mode” e.g., Brocade MLXe Series. But in this
document, we don't construe to this meaning.

2.4.2. OpenFlow hybrid mode

In general, the controller is responsible for the forwarding deci-
sions. In OpenFlow-hybrid mode supported by OpenFlow 1.3 (Ben
et al., 2012), the controller can forward the packets to NORMAL port,
delegating the forwarding decision to the traditional control plane.

3. Hybrid SDN models

In this section, we discuss different approaches to deployment of
hybrid SDN and classify them. For each approach, we discuss the use
cases that apply to them and the benefits and limitations of each
approach.

3.1. Classification based on architecture and components

In Fig. 1, we categorize based on whether there is coexistence in the
control plane or the data plane. Naturally, the case where neither there
is coexistence in the data plane nor in the control plane is meaningless.
Secondly, mere co-existence in the data plane without any co-existence
in the control plane is hardly advantageous as explained in 2.1.a.

3.1.1. Co-existence in the control plane only

Looking back at the history of SDN, there were some attempts
(Caesar et al., 2005; Balus et al., 2013; Atlas et al., 2013, ; Enns et al.,
2011) that advocated introduction of a centralized system, within
traditional IP networks for better configuration power and manage-
ability. Inspired with those results, this model attempts to introduce a

Sandhya et al.

(d) Edge placements (e) SDN Overlay

Journal of Network and Computer Applications 100 (2017) 35-55

Legacy Switch

Legacy Router

SDN Switch

SDN Router

Middleware

SDN controller

Under distributed
control plane
Under SDN

controller

AR

(f) SDN and Non-SDN islands

Fig. 2. Various hybrid SDN Models classified based on architecture and components.

central control to enhance the distributed control. Vissicchio et al.
(2014a) refers to this approach as Integrated hybrid SDN.

Definition 3.1. Controller Only: As shown in Fig. 2a, the model
introduces an SDN controller whereas the rest of the network remains
unchanged. The idea is to enhance the distributed control plane with
inputs from the centralized controller that has benefits of the global
view of the network, fast convergence, flow abstraction, etc.

As Fig. 2a shows, the SDN controller may interact with the legacy
nodes which can either be direct or deceptive. In direct communica-
tion, the controller itself understands the protocol and no protocol
translation is involved. For example, in the Routing Control Platform
Caesar et al. (2005), the controller acts as an IGP and BGP (Border
Gateway Protocol) node to communicate back and forth.

In deceptive communication, the controller interacts with the
legacy nodes with the help of protocol translation e.g., it injects packets
of legacy protocols in the network to provide SDN like benefits.
Vanbever and Vissicchio (2014) propose a method to provide SDN
control over the existing network, by introducing fake nodes in the
network. In a strong form, the SDN controller may take responsibility
for all the network services while using the legacy protocols as
interfaces to communicate with the data plane devices.

Advantages.

1. This deployment strategy can be used by the network administrators
to check, whether and to what extent there is a need for SDN
deployment in their networks while building self-assurance about
the reliability and understanding of its operation.

2. The model does not require any SDN data plane hardware and
consequently incurs the least investment.

3. Further, this deployment neither entails any change or disruption of
previous services running in the network. Relying on legacy proto-
cols, the administrators may choose this model as the first phase in
an incremental deployment strategy.

4. No interoperability issues between heterogeneous devices need to be
addressed.

5. It is robust as it can always fallback to legacy distributed control, in
case the controller goes down. In another case, the controller need
not calculate temporary forwarding paths in case of failures as that
can be taken by the legacy control plane automatically.

6. In the strong form, if the SDN controller has fully taken the
responsibility of complete management, the organization can pro-

39

ceed to progressively replace and add new SDN data plane
hardware.Disadvantages.

1. This approach incorporates limited SDN benefits to the traditional
network.

2. The controller has the additional overhead of parsing a range of
legacy protocol packets, discovering convergence of legacy routing
protocols (like OSPF) etc. Thus, the controller may itself become
vulnerable to failure.

3. A legacy protocol interface is much more complex than current
proposals like OpenFlow and still, may not be complete in terms of
functionality as compared to OpenFlow. Therefore, not all benefits of
SDN can be realized (Fuentes et al., 2014).

4. Not all legacy nodes support all protocols, for example, a Layer 2 device
such as the switch does not support Layer 3 protocols like OSPF. This
necessitates that in order to be robust, the controller should have a
hierarchical list of protocols (from complex ones that work in higher
layers to simple ones that work in lower layers) to fallback to, in case
the device fails to respond to other protocols. For example, a topology
discovery service in a controller employs stealing and parsing OSPF
Hello packets; but for a Layer 2 device, the controller must fallback to
SNMP (Simple Network Management Protocol) or ARP (Address
Resolution Protocol) depending on the type of device.

5. Security is yet another issue in this approach because the centralized
controller is exposed and prone to attacks. If the controller gets
compromised, then fake control messages can enter the network.

6. Using this approach, we cannot modify packet fields (such as source/
destination MAC (Media Access Control) addresses, SCTP (Stream
Control Transmission Protocol), UDP (User Datagram Protocol),
IPv4, IPv6 fields) which on the contrary, are supported in SDN
enabled switches.

3.1.2. Co-existence in control & data planes

As the name suggests, the models where there is hybridization in
both the control and data planes fall in this category. Consequently,
these can be subcategorized based on whether the communication
pillar exists.

3.1.2.1. SDN &non-SDN Islands. To begin the transition, an
organization may choose a small part of its network to be upgraded
to SDN whereas, the rest of the network continues to function
unaltered. This leads to the formation of islands.

Sandhya et al.

Definition 3.2. SDN & non-SDN Islands: In this approach (Fig. 2 f),
the network is partitioned into different regions (i.e., SDN and non-
SDN regions). The control in SDN region is centralized (i.e. provided by
the SDN controller) and control in the non-SDN region is distributed.
Dissimilar networks are connected via a gateway.

Vissicchio et al. (2014a) refer to this as Topology-based Hybrid
SDN where there is a topological separation of the nodes controlled by
each paradigm. In B4 (Jain et al., 2013), an SD-WAN (SDN in a Wide
Area Network) is designed and implemented for connecting Googles
data centers across the planet. SDN is adopted in the backbone to
maximize bandwidth utilization, whereas it connects to remote data
centers, storage accesses with non-SDN protocols. Similarly, Hong
et al. (2013) present SWAN, centrally controlling inter-data center
network backbone with SDN and rest of the zones are legacy managed,
authors present SWAN, centrally controlling inter-data center network
backbone with SDN and rest of the zones are legacy managed.

Advantages.

1. Naturally, fits a transition strategy in which SDN is introduced on a
per-region basis. This can be an incentive to begin the transition
with a small region, build confidence and expertise and move to the
next.

2. Regions can be increased as the technology matures, expertise is
cultivated, and a new budget is available.

3. Many enterprise networks are already separated into domains due to
past merger/acquisitions, hierarchical separation for management,
specific technical need etc. So in these cases, the organization may
opt for this model.

4. Failure of SDN deployment has effect in the deployed region only,
rest of the network has no effect.

5. Introduction of new mechanisms to communicate in between
regions is easy. For example, solely by modifying the SDN control
logic, safer (Le et al., 2010) and flexible (Wang et al., 2009) inter
connection mechanisms can be deployed.

Disadvantages.

1. Deployment cost is high, as all devices in a given region are replaced
with SDN nodes.

2. Cross-compatibility between islands may limit network functional-
ity.

3. Long periods of service disruption in deployment phases. The
network remains in a complex state until a full transition is
complete.

3.1.2.2. Edge placements. Manzalini and Saracco (2013) propose that
intelligence at the edge is going to be the trend as SDN adoption
spreads. This would simplify management as separation of forwarding
and separation of control will enable focus on solving different issues.

Definition 3.3. Edge placements: In this approach (Fig. 2d), SDN
nodes are placed at the edge of the network. The SDN controller
controls the forwarding decision at the edge nodes. For the controller,
the topology is limited to the SDN devices only, i.e. it abstracts the
existing network of legacy devices. The traffic in the core of the network
uses the legacy protocols. The SDN paradigm is responsible for
managing traffic that travels from the network to the outside world
and vice-versa.

Casado et al. (2012) advocate this idea to separate the network edge
from the core and highlight the key insights and benefits. For example,
SDN nodes are stationed at the edges in a proposal (Mishra et al.,
2016), which map the destination IP addresses of the incoming packets
to unused IP addresses to enable customized routing through the
legacy network.

40

Journal of Network and Computer Applications 100 (2017) 35-55

Advantages.

1. Investment occurs only for the edge devices, while many SDN
benefits can be realized.

2. Scalability (for the controller) is a function of a number of edge
switches. Similar benefits can be realized as compared to a full SDN
deployment of the same size. So, the load on the controller is less as
compared to full deployment.

3. Separation of forwarding for edge and internal traffic simplifies the
management and helps in independent evolution of fabric and edge
(Casado et al., 2012).

4. Separation of control enables separate focus in solving two different
problems. The internal fabric is responsible for packet transport
across the network, while the edge provides more semantically rich
services such as network security, isolation, and mobility (Casado
et al., 2012).

Disadvantages.

1. SDN control is limited to, traffic which is passing through edge
devices only.

2. The traffic generated within the network remains un-monitored.

3. There may be some conflicts between two paradigms while routing
same packets.

3.1.2.3. With middleware. To provide a better SDN-like control, this
approach aims to make the SDN controller understand legacy protocols
with a specific software module, called the middleware, so as to enable
it to interact with legacy nodes. This presents a two-step transition
strategy. After transitioning from legacy to the Controller Only model,
the second step involves changing the data plane progressively, adding
SDN nodes and thus moving towards a full SDN deployment.

Definition 3.4. With middleware: As shown in Fig. 2b, the SDN
controller uses a legacy protocol to the interface (middleware) and alter
the legacy node configuration, whereas it controls the SDN switches in
the standard way. The controller steals, parses and injects packets of
legacy protocols to achieve the goal.

For incremental deployment in enterprise networks (Hong et al.,
2016), the authors have proposed to forward messages flooded by
legacy routing protocols as Packet-In to the SDN controller where they
are parsed. Hand and Keller (2014) present a system of techniques for
enabling SDN control over the existing legacy hardware, which is
proprietary; to realize the fine grain control available in OpenFlow.

Advantages.

1. This model works even if there are no SDN nodes.

. The configuration of the nodes in the network can be automated.

3. All OpenFlow features need not be supported. Only those can be
supported which the organization requires.

4. Therefore, based on the need of an organization, only specific
protocols are parsed, that not only provides the required SDN
benefits, but also reduces the load on the SDN controller and
enables fast performance.

5. Fallback to legacy mechanisms makes it robust, in case the SDN
controller fails.

N

Disadvantages.

1. Not all legacy protocols can be translated at the controller. A set of
protocols has to be chosen intelligently to cater to various Layer2/3
devices in the network and the needs of the organization.

2. Therefore, not all benefits of SDN can be enabled. For example, it
can be difficult to collect network statistics from the nodes directly
by issuing request messages from the controller.

Sandhya et al.

3. Protocol translation at the controller incurs load on the controller
and latency in communication.

3.1.2.4. With upgrade/agent. To provide a better SDN-like control,
this approach aims to make the current devices understand OpenFlow
protocol, so as to enable proper communication with the controller
with the help of an OpenFlow agent.

Definition 3.5. With upgrade/agent: As shown in Fig. 2¢, the existing
nodes in the network are either upgraded or an agent is attached to
translate and understand the OpenFlow protocol and hence
communicate with the controller.

Others propose to introduce an agent for enabling interaction of
legacy devices with the controller (Feng and Bi, 2015; Rostami et al.,
2012; Tilmans and Vissicchio, 2014). The attempt is to answer, with
minimal capital investment, what is the best SDN-like control
possible so that the enterprises need not throw away their existing
network deployments? There can be different degrees to which the
functionality can be mimicked and hence the network performance
can be improved.

Advantages.

1. Cost of deployment is less because for SDN like control it requires
only a controller and a way to mimic OpenFlow like control (either
by placement of an agent on top of legacy or by limited programming
of the switches) for deployment.

2. One may not purchase SDN nodes necessarily.

3. Partial programmability and automation of tasks in the network can
be achieved.

4. Not all OpenFlow features need to be supported. For example, if an
organization wants to improve on network monitoring, the agent
needs to add support only for messages like PortStatistics,
FlowsStatistics etc.

5. Consequently, based on the need of an organization, a specialized
agent can be built, that not only provides the required SDN benefits
and reduces deployment costs but can be tweaked for fast perfor-
mance also.

Disadvantages.

1. Since existing devices are partially programmable, SDN deployment
depends on their reconfiguration. Due to reconfiguration, there can
be some disruption in the network.

2. Scalability can be an issue, because of the bottleneck of the
intermediate agent.

3. The data plane becomes complex and supports both paradigms, this
may give room to security loopholes. For example, if (unencrypted)
remote logging feature of a legacy switch is used to report statistics
to the controller (by assigning the controller IP as the remote logging
system), the connection may not be secure enough.

4. Protocol translation incurs latency.

3.1.2.5. SDN overlay. With the incentive of introducing network
automation feasible across different network infrastructures with the
robustness of fallback to time-tested legacy underlay, this model aims
to build an SDN overlay on the top of the existing legacy network.

Definition 3.6. SDN overlay: As illustrated in Fig. 2e, an SDN
network is built as an overlay on the top of the legacy network. Some
of the chosen devices in the network are replaced with SDN devices in
order to facilitate waypoint enforcement, better traffic management,
etc. The controller sees the SDN overlay as the actual network. The
overlay is composed of logical links which in turn consist of one or

41

Journal of Network and Computer Applications 100 (2017) 35-55

more legacy devices at the substrate.Big Switch Networks' Big Virtual
Switch® is one example of an SDN overlay application. Big Virtual
Switch makes it possible to run a software-defined network on top of
any infrastructure, irrespective of whether it is compatible with
OpenFlow. This is the basis for many of today's data center SDN
products.

In Levin et al. (2014), Caria et al. (2015b) and Lu et al. (2013), only
an abstracted view of the underlying topology is exposed to the SDN
controller through which SDN benefits are realized.

Advantages.

1. Performance of both SDN and non-SDN network can be analyzed in
the same network and hence next deployment phases can be made
more efficient using the results.

2. Specific services that require virtualization can be implemented with
ease.

Disadvantages.

1. Virtual and physical networks are separate entities with different
attributes. This makes the network complex.

2. Gateways between the overlay network and nodes on the physical
network may need to pass high volumes of traffic. For example, the
frontiers can be a bottleneck for communication between SCTs in
Panopticon (Levin et al. (2014)).

3.2. Classification based on functionality

This classification is based on what functional role is assigned to
SDN and legacy paradigms within a hybrid SDN model. We can classify
these models as service based and traffic based; refer (Fig. 3).

3.2.1. Service based

During the transition, only some SDN nodes are available initially.
Strategic placement of these nodes can provide or improve some
services such as load balancing, firewall, simplifying routing (Levin
et al., 2014; Agarwal et al., 2013) etc.

Definition 3.7. Service Based: In this approach (Fig. 4a), the legacy
network and SDN devices coexist, each providing different a set of
services. Network-wide services such as packet forwarding can be
controlled by two paradigms together by having entries in the
forwarding table of each node. Some services can be controlled by
solely SDN paradigm to provide services such as DNS (Domain Name
System) resolution, load balancing, network function virtualization etc.

For example, services of network robustness (quick reaction to link
failures & reduction in path stretch) can be realized (Tilmans and
Vissicchio, 2014).

Advantages.

1. The network operator can choose any of the two paradigms to
provide services. For example, SDN can be used for traffic engineer-
ing. Some services can be naturally managed with a central control
such as Network Function Virtualization (NFV), and operators may
be willing to keep the legacy hardware for services like MPLS
(Multiprotocol Label Switching) Virtual Private Networks (VPNs).

2. There can be a need to improve certain services within an organiza-
tion, which can be an incentive for operators to start the transition.

3. Services can be shifted to SDN progressively with incremental
deployment phases.

4. A failure that occurs in SDN deployment, affects the services that are
handled by SDN paradigm only, leaving the rest of the network services

5 http://www.bigswitch.com/sites/default/files/sdnresources/bvsdatasheet.pdf.

Sandhya et al.

Hybrid SDN

Service Based Traffic Based

Fig. 3. Classification based on functionality.

unaffected. So it becomes easy to figure out the faculty services.
Disadvantages.

1. Investment is huge, although there can be an initial incentive to start
the transition.

2. Services are disrupted for a considerable amount of time, particu-
larly in the initial phase.

3. Some services or group of services cannot be necessarily separated to
be controlled by the two different paradigms, for e.g., we cannot have
load balancing done by the legacy control and routing done by SDN
control.

4. Further, there can be challenges in separating centralized and
decentralized control such as race conditions, latency due to the
time taken for convergence of distributed mechanisms, path incon-
sistencies, etc. (Vissicchio et al., 2013).

3.2.2. Traffic-class based

With the incentive of ease of traffic management, in terms of fine-
grained control, monitoring, security for various traffic classes this
model can enhance applications (such as priority routing for premium
users, and low delay guarantee for real-time applications) and simplify
business cases (such as to provide VPN services while avoiding the
limitations of MPLS RSVP-TE (Jain et al., 2013)).

Definition 3.8. Traffic-Class Based: In this approach (Fig. 4b), the
traffic is partitioned into classes, some controlled by SDN and the
remaining by legacy protocols. Although each paradigm controls a
separate set of forwarding entries in each node, each paradigm takes
care of all network services for the assigned traffic classes.

For example, the traffic is divided into traffic classes at the edge
SDN switch which is then routed differently within the legacy core
(Mishra et al., 2016).

Advantages.

1. This approach provides fine-grained control and helpful for real-
time applications.

2. Easy and automated traffic management can be an initial incentive
for taking up this model.

3. A lot of traffic-related optimizations such as traffic monitoring,
traffic engineering, policy-based routing, firewall and middle-boxing
are inherently supported via network programmability at the con-

(a) Service Based

Journal of Network and Computer Applications 100 (2017) 35-55

troller.

4. Reduces the overhead of the controller, as the controller's respon-
sibility is to install rules only for a part of the traffic.

5. There is a separation of control for traffic classes, which helps in
provisioning services such as security, isolation, application-based
routing, etc.

6. Separation of control on various classes can help with aspects other
than network management such as telecom billing, enabling services
for premium users, etc.Disadvantages.

1. Strategies to separate legacy and SDN traffic have been proposed,
such as mapping source and destination addresses of the packets to
unused IP addressed in the network, VLAN (Virtual LAN) tagging,
etc. This requires rewriting of a packet's header, installing packet
forwarding entries for those IP addresses in SDN and non-SDN
switches (Mishra et al., 2016), which leads to increased latency in
the network and increased load on the switches as well as on the
controller.

2. Incurs good investment for the organization.

3. Fine grained routing for different classes can be limited by the
number of routing entries an SDN switch can support. This can
affect scalability.

4. Comparative architectural analysis

As outlined in Table 1, in this section we provide a comparative
analysis of all the models discussed in the previous section based on the
pillars of hybrid SDN. This analysis helps the network operator to
choose between different models, depending on requirements. We
explain in each paragraph the incentive, investment required, transi-
tion smoothness, ease of automation, policy expressiveness & enforce-
ment, scalability and robustness.

4.1. Classification based on architecture and components

4.1.1. Controller only

This model provides the advantage of introducing a central control,
and progressively the control is shifted to the controller with a gradual
maturity of technology and acquisition of expertise of the operators. Of
all the hybrid SDN models, this model just requires the introduction of
a controller, hence, practically free.

Disruption in the existing services is momentary because no
physical reconfiguration of legacy nodes is required. Network-wide
forwarding decisions are enhanced by the controller as it has a global
view of the network, but it is limited by the capability of the controller
in terms of protocol translation (e.g., not all packet matches are
supported) and pushing them as flow entries (e.g., number of route
maps within a switch is limited). This provides partial programmability
for the traffic. Policy expressiveness is limited by protocol translation
(e.g., not all policies expressed by the administrator can be converted to
flow entries) and enforcement is restricted (e.g., fine-grained routes
may not be possible). The model can scale as long as the controller has

Switch

Router

SDN controller

Under distributed
control plane
Under SDN

controller

(b) Traffic-Class Based

Fig. 4. Classification based on functionality.

42

Journal of Network and Computer Applications 100 (2017) 35-55

(€102)
‘[30 youeSo UIeOU0)

sopou NAS

Ul SeLUD MO[J# R Peo|
I9[[01U0D Aq pajuIry
I9[[011U0D

a1 uo peol £q

PIHWI] SOIALLS NAS

Aefropun £oe3s] uo
oeq[[e} ‘PRO[19][011U0D
‘udisop yIomiau Ag
Koe3a1

01 Yoeq[[e} ‘uone[suBI}
1090101d 01 9Np pajTUTT
I9[[011U0D

Aq A19A0091 ‘peO]
Ia[[oxjuoo £q pajrury
sapou

JuepUNPaI 1sNqOI
‘A[nyeoeas safeog

‘oyads wiSipered

£o3ea] 01 Yorq[[R] ‘PRO[

d[JeI} SPIM-YIOMIaN
*019 Sunnoa paseq Adrjod
‘3ur1ead3us R uLiojiuow

oyjen 10y 1oddng

$901A19s 0Y109ds 10]
Surxoq-a[pprut 10y 11oddng

y10MIBU
Ae[1opun ‘parojuow

-Un I10J Pa[qeus 10N

110ddns juade £q pajruulf
OlyeL} [[v 10} pa[qeuy

apou NS 9Uuo 1ses]
1e Surssed oyjen 10} pajqeuy
Auo oyyexn a8pa I10j pajqeuy

puelst NS
YSnoX 33 UIYIM OLFeI],

poureis-suy j0u ‘uone[sues}

s[qewrwrexdoxd A[ng

a[qissod sossed oyyen
Uu9aMIaq SPIJUOD ‘Oyjen
NS 1oy s[qeurureiSord
S901AIDS

NS Ioj Anpiqewuresgord
R uonjeuwrone IaIseyy

A[uo sspou NS % Ae[19A0
SI9Y10

10} pa[qeus AJfented R sepou

NdS 1oy s[qeurureiSord
uone[sues}

[090101d Aq paywl] :SIDYIO
‘o[qewrurerSo1d :9pou NAS

oyJer) [RUIaIU
10§ 10U 23 98pa 10j Pa[qeUT

A[uo pue[st
NS 1oy s[qeururerSord

SOLIIUD MO[J# R Uonje[SueI}

UOIONIISU0D
-01 39 uondnisip g

uoneIgyuoddx
01 anp uondnisip a[qIssoq

uoneIgyuoddx
01 anp uondnisip a[qIssoq

UOTIONLIISUOIDI YI0MISU
01 anp uondnisip yStH

Juage i3 opeiddn aremyos
‘sapou NS :uondnisiq
sopou Nds

Jo Jusweoe[d d18e1ens

0} onp uondnisip [enieq
uoneISyuodal

0} anp oyyen

98pa 10] uondnisip [enaeq

pue[st paoe[dar
ur uondnisip a[qIssod
uondnisip Arejusurowu
‘uoneInsyuodal

wnuwiIxemn

JuswiAo[dap
Uuo paseq ‘Tenpersn

JuswiAo[dap
U0 paseq ‘Tenpersn

sapou
NJS ‘Ie[onuo) NdS

Juade pue sepou
NAS ‘“Te[onuo) NAS

sepou

NAS “Ie[onuo) NAS
aatsuadxa ‘93pa

18 pooe[dal seolAep#
01 Teuonodorg

SPUB[SL NAS
Jo az1s 03 feuonzodoig

901 A[[eonoeld

UON.

uornnjosal
I[JU0D 13 [0TNUOD PATLYS

UOISIAIP 901AI9S 10]
uoneurp1ood aued ejeq

skemaresd
NVIA :s9pou NdS

Juage
RIA UOIR[SURI]} [0001014

uonos(ur 3 Juresls 1eyded
‘uonersueI) (0003014

UOTIEOTUNUINIOD INOYIM
[onuoo jo uoneredag
SUISTURYOIU
“U01109UU0dI9]UT
‘Kemares eIy

uonoa(ur R Suresis 19ded

siyouaq NS

JuowadeuRI
oyjen Asey

AAN

AYI[S9DIAIAS Paseq
NQS Suronpoxjuy

PHQAY ur

S]1JoUSq WINWIXRIA
9sN-a1 dIEMpIRY
PUE JUSUIISIAUT
[etIuiv

150D UTW Y}IM SOpoOU
R [00U0d NAS

28pa 1 2ouasi[eIu]

uonisuen
poaseq uoiday
[onuod

[B1IUSD ‘9OUSPYU0D

sopou NS “I9[[o1Iu0)

Sepou d10wW
10 suo y3noayy sassed
dyJen ‘I9[[0nu0)

SO0IAIDS 9} 0] paoe[d
SOUPUMS “ID[[01U0Y)

sopou NS “I9[[o1Iuo)

syuage
sepou N(S ‘Ie[onuo)

sopou NJS “Ie[[oriuo)
sopou

NAS 211 Jo syuawoed
a8pa ‘19[[0nU0)

spuefst
NS M J9[[0nuo)

Nds aang

paseqg
sse) -ogjeiy,

paseq 901AI08

Ae[I2AQ NAS

sy
/opeaddn yum

SIEMI[PPIN
M

sjudwIdR[d
aspa

spue|s|
Nds-uoux Nds

I9[[o11u00 £q paTwIr] [000101d £q parrwry [000101d £q parrwury [eotsAyd oN SI ‘I9[[onuo) NAS ‘uone[sueI [00101d [entut Surpying BoNuUo) A[UO II[[ONUOD
s[oo0joad AoeSop 019 STOV ‘SNV'IA ‘[[emaIl] suoneIndyuod xa[duwo) o1y uondnisyq pakojdap-axd ‘J1 suoN SQUON QUON QUON MJIOMIIN AoeSoy
ssouIsnqog JUIWIDIOJUD ssoutjoows uonessajuyg
pue AIqeress X ssoudAIssaxdxa Ad1j0g uonewone Jo asey uonisueday, JuULUISIAU] wiSipered-aoyuy 2ANUIdU] sjuduodwod NS
Surpasaqssoa) uonedIUNUIWO) DUDISIX20) xreqd

43

Sandhya et al.

'ste[id N@S PUIQAY JO SULID) UI SPPOW JUSIIHIP Jo uosiredwo)
T 31q&L

Sandhya et al.

sufficient computing power, but also depends on the distributed
routing protocols, which the controller translates. In case of failure,
the network can continue to function with legacy protocols as it used to
work without the controller.

4.1.2. SDN and non-SDN islands

This model naturally fits a transition strategy in which SDN is
introduced on a per-region basis. This can be an incentive to begin the
transition with a small region, build confidence and expertise and move
to the next. The cost of investment depends on the number of SDN
nodes deployed in an SDN island.

Disruption of services occurs during SDN island creation, may be
prolonged in case existing region is replaced with SDN nodes.
Reconfiguration of all the islands and installation of interconnection
mechanisms or the gateway may take time. Network programmability
is enabled only within an island. Policy expressiveness & enforcement is
enabled in SDN island, although this may be extended to other traffic
as well if it passes via an SDN island. Scalability is a function of the size
of islands whereas robustness is managed by the paradigms separately.

4.1.3. Edge placements

An architecture that provides more intelligent routing at the
perimeter of the network than the centralized hub-and-spoke model
is capable of optimizing traffic flow without compromising security or
quality of service and driving up costs. With edge placements of SDN
nodes, this model focuses to have SDN intelligence at the edge (Casado
et al., 2012) and thus, a great incentive for SDN transition. The
investment is proportional to the number of SDN nodes introduced and
can be expensive. In this scenario, this architecture can maximize
network performance without compromising security, mobility or
survivability, while at the same time, minimizing both capital and
operational expenditures.

Partial disruption occurs in the edge traffic due to the introduction
and reconfiguration of SDN nodes. A reconfiguration for legacy nodes
may be necessary. Programmability is possible for traffic passing via
edge. Separation of forwarding for edge and internal traffic simplifies
the management and helps in separating focus for packet transport
across the network and edge services (edge security, isolation, mobility
etc.). It also enables the independent evolution of fabric and edge.
Policy expression and enforcement are possible only for edge traffic.
Distributed traffic management frees up controllers to focus on large
scale network and policy management as well as other services,
resulting in a more efficient architecture. This scales up gracefully
because if one needs to expand edge points, one requires to invest only
in an SDN node, as compared to purchasing a single core device and
later having to scrap it in favor of a new device that offers a little more
capacity.

4.1.4. With middleware

The primary incentive for this model is to enable SDN control on
the existing the data plane with minimum cost. After the first step of
the transition from legacy to the Controller Only model (and thus
building up confidence and expertise), the second step is to add SDN
nodes and thus move towards a full SDN deployment. The investment
scheme can be gradual if the placement of SDN nodes is chalked out
based on budget constraints, performance enhancements.

Disruption of services occurs partially due to the introduction of
SDN nodes. It may happen in each phase of the transition. The SDN
nodes are programmable, whereas, for other nodes, programmability
depends on the SDN controller's capabilities, its load, and support from
the legacy devices (e.g., some packet matching fields may not be
supported). Flow abstraction, and enhanced traffic management in
terms of policy expression and enforcement are available for a flow
under different schemes. For example, it may be required the flow must
pass via at least one SDN node for benefits like monitoring, firewall,
etc.; and it must pass via two SDN nodes, for fine-grained routing. The

44

Journal of Network and Computer Applications 100 (2017) 35-55

load on the SDN controller is the bottleneck for scaling up and the
robustness is provided both by the SDN controller (e.g., routing traffic
away from the congested area by introducing a fake node) and legacy
protocols.

4.1.5. With upgrade/agent

If the legacy nodes can be tweaked to communicate with the
controller either via a software upgrade or introducing an agent, we
need to introduce only the SDN controller in the network. This fosters
maximum reuse of the existing hardware and thus minimizes invest-
ment.

Disruption of services may occur for a short span of time either due
to introduction of SDN nodes, software upgrade or introduction of an
agent; while reconfiguration is being done. Depending on the degree of
protocol translation, the legacy nodes can be automatically configured
and programmed. An organization may choose a specific set of protocol
features only for translation to strike a trade-off between performance
and protocol benefits. Consequently, if legacy nodes can closely act like
SDN nodes with the help of an agent, even complex policy expression
and enforcement along with middle-boxing & traffic steering function-
alities may be realized. Scalability is limited as the introduction of
agent incurs an increase in latency in communication. It is also limited
by legacy protocols used. The model offers robustness in terms of
fallback to legacy protocols.

4.1.6. SDN overlay

With the incentive of leveraging maximum SDN benefits, the model
aims to build an SDN overlay on the top of legacy networks. Investment
is dependent on the design and implementation of the overlay.

During the transition, this model faces prolonged disruption of
services as it requires network reconstruction. Programmability, and
policy enforcement and enhancement are fully enabled for the overlay
network, although un-monitored traffic in the underlay may not
support this fully. Scalability is a function of network design and
controller load. Failure recovery is provided by the SDN controller as
well as the legacy protocols.

4.2. Classtfication based on functionality

4.2.1. Service based

With the aim of introducing service management using SDN, nodes
are introduced at strategic locations in the network. Investments can be
gradual based on the incremental deployment strategy of new nodes.

Every incremental stage can cause disruption of services due to the
reconfiguration of nodes. A particular service which is getting migrated
may face prolonged outage, whereas other services may resume. The
services that SDN supports can be fully programmed using the SDN
nodes. This may be partially available for services provided by legacy
paradigm. There is inbuilt support for flow abstraction for traffic of
services provided by SDN paradigm. Specific services like traffic-
steering and middle-boxing can be enhanced. The scalability of these
services is limited by the load on the controller.

4.2.2. Traffic-class based

SDN nodes are introduced at strategic locations in the network with
the aim of monitoring maximum traffic under SDN. Investments are
gradual, based on the incremental strategy used to cover traffic flows.

There can be a lot of disruption of services during reconfiguration,
although once done, the traffic management can be fully programmable
if it passes through an SDN switch. Not all nodes in the path are
required to be SDN enabled. Traffic management is easy to implement
because of inherent support for traffic monitoring, policy based
routing, etc. The network is scalable for non-SDN traffic and can be
made more scalable for SDN traffic if more SDN nodes are deployed,
although it is limited by the number of flow entries possible in SDN
nodes.

Sandhya et al.

Table 2
Summarized overview of hybrid SDN.

Journal of Network and Computer Applications 100 (2017) 35-55

S.No. Plane Problems and issues Hybrid SDN
1. Data plane Controller-switch Feng and Bi (2015), Parniewicz et al. (2014), Hand and Keller (2014), Caria et al. (2015b)
communication

2. Control plane Traffic engineering Vanbever and Vissicchio (2014), Caria et al. (2015b), Hong et al., (2016) , He and Song (2015), Agarwal et al.
(2013), Chu et al. (2015), Guo et al. (2014), Caria and Jukan (2016a)

3. Control conflict Parniewicz et al. (2014), Vissicchio et al. (2013)

4. Configuration Lu et al. (2013), Hand and Keller (2014), Agarwal et al., (2015)

5. Topology discovery Hong et al. (2016), Agarwal et al. (2015), Caesar et al. (2005), Jmal and Fourati (2014), Pakzad et al. (2014),
Ochoa Aday et al. (2015), Kandoi (2015), Pakzad et al. (2014), Pakzad et al. (2016), Sharma et al. (2011),
Sharma et al. (2013), Saha et al. (2016)

6. Fault tolerance Chu et al. (2015), Sharma et al. (2011), Sharma et al. (2013), Caria and Jukan (2016a)

7. Management Plane Scalability Fu et al. (2014), Dixit et al. (2013)

8. Network Monitoring Hong et al. (2016), Caria and Jukan (2016a)

9. The placement problem Caria et al. (2015a), Hong et al. (2016), Levin et al. (2014)

5. Implementation approaches of hybrid SDN

In this section, we discuss the approaches taken by the researchers
to implement the hybrid SDN models. An overview of approaches in
hybrid SDN implementation is explained in Table 3. We highlight the
major contributions, specific deployment techniques used and limita-
tions of the model.

5.1. Controller only

In this section, we discuss the different approaches used to achieve
centralized control in the legacy network without the deployment of
SDN nodes. For example, Caesar et al. (2005)achieve centralized
control over the legacy devices by establishing an internal border
gateway protocol (iBGP) session with each router in the network.

5.1.1. Session establishment

Caesar et al. (2005) propose a centralized approach “routing control
platform” (RCP). It establishes an iBGP session with all the routers in
the topology and uses a standard protocol to find a finely grained route
to the destination on behalf of the router using the available routes and
topology view. RCP provides consistent assignment of routes for
external traffic, which provide reliability. RCP reaction is fast for link
failures in the network. It is similar to SDN controller, but it is dealing
with external traffic only. Using RCP for optimization of large ISPs
(Internet Service Providers) could be difficult.

5.1.2. Injection of fake packets

Vanbever and Vissicchio (2014) propose the idea of achieving
central control over distributed routing computation through fake
nodes. In their next work (Vissicchio et al., 2014c), they propose a
central controller called, “Fibbing”, which provides flexibility in net-
work routing, like load balancing, traffic steering, and providing a
backup path, by manipulating the input of traditional routing protocol.
The manipulation is done by introducing fake nodes in the network
through injecting fake LSAs. Fibbing takes the following as input, (i)
path requirements from network operator (ii) network topology (iii)
directed acyclic graph for each destination. Based on the path require-
ments, it injects fake LSAs in the network to introduce fake nodes in
the network topology, announcing the reachability to a destination. The
workflow of Fibbing is shown in Fig. 5.

In their next work (Vissicchio et al., 2015), they show the evaluation
of Fibbing controller along three axes viz., (i) load on router, (ii)
topology augmentation and (iii) performance gain.

(i) Load on the router can be expressed in terms of CPU processing,
memory usage, programmability for installation of forwarding entries
and time taken in the convergence of routing protocol. Fibbing

45

introduces less CPU and memory overhead on routers even when a
large number of fake nodes are injected into the network. The time
taken by Fibbing to install thousands of entries in the network is
approximately constant. Further, they show that injection of fake nodes
in the network does not have any visible impact on the time taken in
the convergence of distributed routing protocols.

(i) For topology augmentation, they propose two augmentation
algorithms, namely simple and merger. Simple algorithm introduces
fake nodes for every destination. Whereas, the merger algorithm works
in phases. In the first phase, it injects an excessive number of fake
nodes and computes the upper bound and lower bound for their
respective costs. In the second phase, it merges the fake nodes based on
the upper bound and the lower bound. They show that both algorithms
augment the topology in time ranging from 0.5 ms to 8 ms.

(iii) Fibbing controller injects the fake nodes on unused links, as a
result of which the throughput gets doubled.

In their recent work Tilmans et al. (2016) assess the performance of
the Fibbing controller for on demand load balancing to enhance the
video delivery. They illustrate that Fibbing provides better and fast load
balancing in case of sudden congestion and provides a smooth video
play to the end users. The limitations of Fibbing are, it can not
manipulate the traffic based on ports because forwarding is done
through IP address matching. Port based forwarding can be possible
with the help of middlebox, but this incurs the cost for a middlebox.
Fibbing can be vulnerable to security loopholes because any compro-
mised router can send fake LSAs in the network. Fibbing is limited to
destination based routing.

5.1.3. Translation of high-level goals into configurations

Hartert et al. (2015) propose an architecture, that consists of two
layers, connectivity, and optimization layer, on top of the physical
layer. The connectivity layer's responsibility is to provide default
forwarding behavior to the underlying devices in the network.
Whereas, the optimization layer defines the forwarding rules with the
help of proposed “Declarative and Expressive Forward Optimizer”
(DEFO) controller. The network operator can define certain goals, in
terms of (i) redistribution of the load from heavily loaded links to less
loaded links, (ii) traffic engineering e.g., bringing link utilization under
a certain threshold, (iii) to enforce constraints e.g., forcing a traffic flow
to pass through a firewall etc. DEFO takes the goals defined by the
network operator and with the help of optimization layer, it translates
these goals into configurations. The forwarding rules generated by
DEFO overwrites the forwarding rules generated by connectivity layer.
DEFO maximizes the utility of input (for example, link capacity,
expected traffic matrix etc.) for network optimization. In case of the
controller failure, the forwarding rules are installed by the connectivity
layer. Thus provides robustness.

Journal of Network and Computer Applications 100 (2017) 35-55

sojoydoo] L1109 01 S[RIDUNA Bq UED 1]

Sunnou paseq 110d spiaoad jou ueod 31

Jd9]1 uo juapuadap A[e10[durod st £19A00a1 aInjreq
pUBWLD OyJer}

JTWrRUAD JO 9sed ur sao1asp Aoeda] ydnoayy yred oy
Ppue sa0149p £0e39] 91 2IN3YU0d A[[ROIWRUAD J0UURD)
)I0M19U B} UT SINID0

9IN[TR] YUI[OU USYM 9SBD JT[} I9PISU0D 10U S0

PO[[O1IU0D A[NJ 10U dIe $301Ap Ao

01MS NS UB 9SI9ARI} 10U

S90P 1Y} ‘MO 91} 10] [01U0D dplaoid 01 9[qe 10N
s)10M1dU 9} Ut ym syied (e s1epdn jou ueod 1|

parioddns jou st s201A9p e s}ayoed jo Surepng

paambai st uoredyIPOUT ON

paambaz st UOTEIYIPOUT ON
JyIomau
[euONIpEI]} Y] UT SOPOU Y] JO UOISNOU]

sopou NS {m Sutuonned yIomioN
103e10do

YI0M]9U WOIJ PIPISU dIk SjudWIMbax
awos 1deoxa parmbai st uoneoypow oN
sapou

yIomiau a1} 10j juswko[dop Juase ue spasN

paoeld are sopou NAS

$93pe 91 1 puB S[[90 01Ul PIPIAIP ST YIOMION
£3orodo], Sunsixs Ul SVIAP

NQs§ awos [eisut ‘A3ojodoy a3 uo Surpuadeq

YI0MIBN AT} UT S0P NS dwos Lojdaq

Nas
£q pooerdal o [[IM SIO1AAP AOBSD[91} JO SWIOS

arepdn [ied pue UOBOYLISA
Wed m w[jonuo) mogusdo Xod

ut So[ajowal pue depy-a1noy “TOV Sos()
uonemsyuod

NS 9[qeud 01 ggg oquinu uondo oy} A1red
0] 98essouwl 19JJ0 pue AI8A09SIp J100d/dOHA

aInyovPIe TVH
I9[[01U0d OJHA

10MI9U 9} UL Sepou axe] Suronponut ¢ SuiqqLy,
Nur yoes uo Keded areds ewndo
Ieau puy 0} WILIOS[R dUSLNSY dAlRId Uk pasodolg

Sunnox panqrusip a3 ut sajednred

I9[[0IIU0D [RIIUSD BY] AIAYM dINPANTYPIR Uk pasodoid
Sanyrej yuiy jo

ased ur yped dnyoeq apraoad 03 aanyoayydre NASdI pasodoid

yIomiau Ade39[Jo uonodensqe spaoid 01 Lem e pasodoig
uonnqLISIp Peo[I0j POYIoUI Pue PaImbar sad1Adp NAS

Jo Iequuinu 3y} Sunewnsa 10j wyliode onsLnay e pasodoig
poylew

uonewrxoxddy Sursn wajqord Sunnoy ostwreuiq oY} SAA[0S

smpow {J, pue seuue[d yuswkoidop NS

mopjuadQ Sursn sapou

NS se [[om se £0e3a] 10q Jo a[qe) Surpiemioj ay} Ajrpowr
UOIYM ‘SISOUR{O[O], :IS[[OIIU0D YI0MIdU PLIqAY e pasodolg
$90149p £33 190 [013U0D BYI] NAS

e sop1aoid YoIYM ‘MO[IPIsOT) Paf[ed walsAs e pasodoid

[o1MS NS MdU 9} 91BI0] O] PUB SISINOI /SAYIIMS
91IPAULISIUT JO UONBINSUOD 10J SINPOUL JUSIAJIP SIPIAOIL

I9][01U0D
01 yIomlau NS PLIGAY Jo (uonoensqe
9°T) Ma1A paytun dp1aoid 01 MO
uonsaguod

PproAe 0] yiomiau 9d1e[Jo uoneziundQ
}I0MIaU [eUONIPRI}

ul [01]U0D PazZI[eNUSd 9p1a0id 01 MOH
SaIN[TEJ JO 3SBD

Ul SYUI] 97} J9AO PBO[3} ANLIISIP 0] MO
pesy1040

UINUWITUTUT [}IM JUSWUOIIAUS PAINLIISIP
Ut [01U0d [e11UD dp1aoid 0} MO

SO 190ed

NAS PUGAY Ul 1uawadIofud £o1j0g

NdS prgdy
10J 90URID[0] }J[NB] PUB UOIRWIISD-1S0)

NQAS PHqAY ur Suesuwsuy dyjeL],
NS pHqiy
ur A19A0031 dan[re} pue SuLiesuIduy oyjel],

JuWUOIIAUY PUIqAY ur mopjuadQ
Sursn syred Aoe39] 1040 [01U0D FUIPIAOI]

$901A9p £0€33] 1940 [ONUOO SN[NS
JI0MIdU

[euonipen /NAs Sunsxe ut youms Nas
mau jo uondope pue uoneInSyuoo-oMy

102

ST0C

Y102

9102

ST0C

¥10¢C

102

ST0C

€10¢

9102

ST0C

¥10¢

S10C

‘Te 30 Zommarured

‘Te 19 1eNeH
‘[& 19 OTYDDISSIA

‘Te 1 eLe)

“[& 19 OIYDIISSIA

‘Te 19 suewL],

‘Te 19 uae]
Te 19 nyy
‘Te 19 [emIedy

‘Te 10 SuoHq

Te 3 uir

‘Te 19 pueyq

‘Te 10 Iedney

suoneywry

paamboy

uonnjos pasodoag

ANSSI PISSAIPPY

Jeax

OUIIIOY

46

Sandhya et al.

's1oded NS PLIGAY JO MOIAIOAO PIZLIBWIWING
€ dlqeL

Sandhya et al.

Compilation

Augmentation

Journal of Network and Computer Applications 100 (2017) 35-55

Optimization Injection/Monitoring

.

Path
Requirements

A
b

Per-destination

Network I & . "
etwork topology forwarding DAG

» XY

Augmented Topology

-

°

l

°

-
®

(5

Reduced topology Running Network

Fig. 5. Fibbing work-flow.

5.2. SDN and Non-SDN islands

With partitioning of the network into regions which are managed
separately by either of the paradigms, along with an optional
mechanism to implement cross-region services; this model has
largely been using to implement software defined WANs. In the
concept of SD-WAN, the separation of control mechanism from its
networking hardware leads to simplified management and opera-
tion. The backbone zone is SDN managed whereas connection with
the end users, remote data centers, remote storage accesses,
connected non-SDN WANSs is supported based on existing distrib-
uted routing protocols of the legacy (Jain et al., 2013). In SWAN
(Hong et al., 2013), a logically centralized controller orchestrates all
activity for the SDN controlled backbone. For each service, a broker
aggregates demands from the hosts and apportions the allocated rate
to them. One or more network agents intermediate between the
controller and the switches

5.3. SDN overlay

The main incentive behind SDN overlay model is to build an SDN
network overlay on the top existing network irrespective of where the
SDN nodes are placed. To build an SDN network overlay, the following
approaches have been used by the researchers.

5.3.1. Network virtualization

Network virtualization is the process of combining the software and
hardware networking resources (e.g., switches, routers, etc.) to create a
logical software-based view. The following works use network virtua-
lization functionality to isolate the SDN and legacy network.

Levin et al. (2014) give an architecture “panopticon” for incre-
mental deployment of SDN in a legacy network with minimum
budget. In panopticon, the network is divided into cells and these
cells are connected through SDN switches. The switch ports are
divided into SDN-controlled (SDNc) ports and legacy ports using
VLAN IDs. The SDNc ports are controlled by the SDN controller
whereas, legacy ports are not. Logical view for the controller consists
of SDN nodes that contain their physical ports and SDNc¢ ports (which
may physically lie at a nearby legacy switch). To control legacy ports
with the SDN controller and thus enable packet forwarding, it uses
Solitary Confinement Trees (SCTs) and a VLAN ID assigned to each
SCT to provide isolation. The constraint (named Waypoint
Enforcement) is that the traffic between SDN-controlled ports must
traverse through at least one SDN switch. Further, it may increase
path-stretch for certain flows. Forwarding at non-SDN ports remains
unaffected by panopticon. The authors provide a planner for incre-
mental deployment of SDN devices in the existing network. This can
be a long-term solution for incremental SDN deployment. Lu et al.
(2013) propose a controller called “HybNET” for hybrid SDN network
management. HybNET has a complete view of physical network
topology, it provides an abstraction to the underlying network by
offering a view of SDN nodes to the controller. The SDN nodes are
connected by virtual links, where every virtual link may comprise of
multiple legacy nodes.

47

5.3.2. SDN partitioning

In Caria et al. (2015b), a single OSPF domain is divided into sub-
domains with the help of deployment of SDN nodes. They propose a
network management module called “Hybrid Network Manager”
(HNM). It runs on the top of the SDN controller, the information
about the network topology and routing is forwarded to HNM using
LSAs. During an initial phase, HNM does not alter any routing and it
replies like an OSPF node. Once the HNM gets complete information
about network topology, it provides optimal routing by altering the
LSAs through changing the link weights. It does not affect the routing
within the sub-domain.

In their next work (Caria and Jukan, 2015a), the authors propose a
hybrid SDN/OSPF network control plane. The network is divided into
sub-domains (Caria et al., 2015b) and an optical bypass® is set up
between the SDN switches. The purpose of optical bypass in between
border nodes is to offload traffic which transits among sub-domains.
Therefore, it is easy to cope up with high traffic demands by over
provisioning link capacities. The authors claim that this solution is
good enough and full SDN migration may be skipped.

The authors use a brute force mechanism to partition the network
into sub-domains by the deployment of SDN nodes. In their recent
work (Caria et al., 2016b), they propose an ILP module to partition the
network into sub-domains. The ILP module is based on graph
partitioning theory, according to which, any node in the graph belongs
to one and only one subgraph. ILP partitions the network by placement
of SDN nodes in such a way that their removal leaves the network
unconnected. Further, they propose models for capacity planning,
traffic engineering, and load balancing. In their recent work (Caria
and Jukan, 2016a), they propose a heuristic algorithm for estimation of
spare capacity required to deal with link failures in the network. They
also provide an analysis, where spare capacity required in case of the
SDN partitioning scheme is less than legacy and other hybrid models.

5.4. Edge placements

We present here some of the approaches used by different authors.

5.4.1. IP address mapping

Mishra et al. (2016) propose a framework for policy implementa-
tions in the network similar to those supported through OpenFlow. The
framework allows for exploiting the benefits offered by SDN, using the
legacy network devices and a minimal amount of SDN enabled
switches. The design exploits the immense availability of unused IP
addresses within networks. SDN nodes are stationed at the edges,
which map the destination IP addresses of the incoming packets to
unused IP address and thus, enable customized routing through the
legacy network. The legacy nodes forward the packets based on
destination IP address. The legacy network routes are controlled
through static routes, while the entire network is managed by the
SDN controller.

© An optical circuit, that consists of optical switches connected through an optical fiber
cable.

Sandhya et al.

Hardware Abstraction Layer

Cross-Hardware Platform Layer
l OpenFlow Endpoint |

+

A
v

| Hardware Specific Layer |

A
¥

Dell Split
Data
plane

ATCA
with
Octeon

Net
FPGA

i ADVA -
DOCSIS DWDM GEPON

Ezappliance
NI

Programmable Platforms Closed-box Platform

Alien Hardware Devices

Fig. 6. HAL implementation framework over alien hardware devices.

5.4.2. Using virtual machines

Nakahodo et al. (2014)propose a way to reduce the congestion in
the network using S-OSPF (Smart-OSPF) (Mishra and Sahoo, 2007).
Hybridization is achieved using two VM (Virtual Machine) machines on
the router, one VM for traditional devices like quagga and another VM
for OvS (OpenvSwitch) switch. This hybrid router is deployed at the
edge of the network for traffic distribution to reduce the congestion in
the network. The second VM (OvS switch) uses S-OSPF protocol to
construct the forwarding table, whereas, first VM (quagga router) uses
OSPF. These VMs are connected with a virtual link.

5.5. With middleware

The following works are implementing different middlewares to
provide translation between different paradigms. The working details
of middleware in each work is as follows:

Lu et al. (2013) propose a HybNET controller to manage hybrid
network infrastructure. HybNET works in two phases. In the first
phase, it constructs the network topology and sets up the RPC
connection between the SDN controller and legacy nodes. In the
second phase, the controller takes the network management request
from the network operator and parses it. Based on the request, the
HybNET controller computes the network operation and separates out
the operations needed to be performed on legacy nodes and SDN
nodes. HybNET communicates the changes required in SDN nodes to
the SDN controller via REST API calls. Further, these changes are
communicated to SDN nodes via OpenFlow protocol. The change in
legacy nodes is performed by HybNET controller via RPC callback
functions. Any change in network infrastructure like a change in
physical topology needs to be reported to HybNET controller.

Hand et al. propose a “ClosedFlow” model, which provides cen-
tralized control over the legacy devices by configuring the vendor
specific devices (Hand and Keller, 2014). The step-by-step procedure
involves enabling an in-band overlay control channel and remote
access (Secure Shell, SSH or telnet) to each switch for controlling
flows, such as pushing new flow rules. The switch is configured to
remote-log adjacency changes to the controller, although this estab-
lishes flow rules in the switch. OpenFlow's packet matching and apply
actions are realized partially via the use of ACLs and Route maps.
Modification in the packet header, such as changing port number and
protocol specific modifications are unsupported by ClosedFlow.
Although as per OpenFlow documentation, modify actions are con-
sidered optional for implementation of an OpenFlow switch/network,
these are used heavily, hence a drawback for this mechanism. The
implementation of ClosedFlow is limited to the devices that support
functionalities like ACLs, route maps, so it might not cover all types of

48

Journal of Network and Computer Applications 100 (2017) 35-55

flow entries as provided by OpenFlow.

Parniewicz et al. (2014) propose an architecture “Hardware
Abstraction Layer ” (HAL), to transform the legacy nodes into
OpenFlow nodes. HAL provides abstraction by hiding the underlying
network topology as well as vendor specific features supported by each
device from the SDN controller. This abstraction is provided by
decoupling the management logic and hardware specific logic of
network devices. HAL is divided into sub-layers namely, Cross-
Hardware Platform Layer (CHPL) and Hardware-Specific Layer
(HSL) to achieve the aforementioned decoupling, the framework is
shown in Fig. 6. HSL collects the information about network topology
and sends this information to CHPL. When a network packet comes, it
is forwarded to CHPL module, which is processed by the OpenFlow
pipeline. The flow entries and packet related actions are forwarded
back to HSL, which translates these actions into devices dependent
syntax. In their next work, Belter et al. (2014) further show the
implementation of HAL on “Alien hardware devices”’, e.g.,
“EZappliance” and “DOCSIS” alien devices.

5.6. With upgrade/agent

In this section, we discuss the approaches taken by the researchers
to upgrade the legacy devices to support centralized control.

5.6.1. Configuration of agent in legacy devices

Tilmans and Vissicchio (2014) propose an “IGP-as-a-Backup SDN”
(IBSDN) architecture. In the proposed architecture, an agent is
configured for each SDN node to exchange the routing information in
the network. In normal condition, the controller configures the route
using OpenFlow protocol. Whereas, the configured agent builds backup
paths using IGP protocol. Whenever a network failure happens in the
network, the IGP agent quickly re-establishes the connectivity by using
the local routing information.

5.6.2. Software upgradation

Feng and Bi (2015) propose an architecture called
“OpenRouteFlow”. OpenRouteFlow provides a centralized control over
legacy devices in hybrid SDN by upgrading the legacy device's software.
OpenRouteFlow architecture consists of “OpenRouteFlow” controller
and “OpenRouter”. The OpenRouter embeds an agent called
“OpenRouteFlow” into the legacy devices software platform. The
OpenRouteFlow agent communicates the distributed routing informa-
tion to the OpenRouteFlow controller. At the same time, the
OpenRouteFlow agent receives the application oriented control in-
structions from the OpenRouteFlow controller, which are then trans-
mitted to the legacy device.

5.7. Services based

Panopticon (Levin et al., 2014) provides fast fault tolerance by
partial deployment of SDN switches. The SDN controller uses the STP
to provide fast reconvergence. The SDN controller notices the update of
STP through frontier “F* and it takes the necessary action to restore
the end-point connectivity in the network. This requires physical link
redundancy within the SCTs. In the case of failure of SDN nodes or
their incident links, recovery requires re-computation of forwarding
state.

Tilmans and Vissicchio (2014) propose an architecture “IGP-as-a-
Backup” (IBSDN), which uses both distributed control as well as
central control over the network. The SDN controller installs rules
based on the primary policies provided by the network operator, which
are called primary rules. In IBSDN, an agent is configured on each

7 (http://www.fp7-alien.eu/?Page_id=62)
8 A switch common between two SCTs (Solitary Confinement Trees).

Sandhya et al.

node, which collects the information about routing. It uses this
information to build backup paths using distributed routing protocol.
In a normal condition, the packets follow the rules installed by the SDN
controller and in the case of link failure, the packet is forwarded
according to the backup provided by the agent. IBSDN provides fast re-
routing in case of link failure, which avoids packet loss. Chu et al.
(2015) provide multiple backup paths by providing IP tunneling
between each interface of router and SDN switch. Whenever a link
fails, the packet is forwarded through an IP tunnel.

5.8. Traffic based

Mishra et al. (2016) propose a framework for class based hybridiza-
tion using IP address re-mapping in a network. At the source SDN
switch, the packet header is modified and the source & destination IP
addresses are altered to un-used IP addresses using a scheme provided
by the SDN controller. The routes are installed by the SDN controller for
these new IP addresses in the path and thus the packets are re-routed.
The packet headers are reset to the original values at the destination
SDN switch. The model can re-provision resources dynamically based on
policies expressed by the network administrator. However, it requires
the source and destination switches in a path of a flow to be SDN
enabled. The performance of their model has not been evaluated.

Jin et al. (2015) “Telekinesis”, a path control mechanism for legacy
switches implemented at Layer 2. The underlying assumptions require
a switch to have active MAC learning and direct path available between
the legacy switch and the OpenFlow-enabled switch. The SDN con-
troller instructs the SDN switch to send seed packets to the source host
with the MAC address of the destination host. This tricks the host to
accept that the SDN switch is actually the destination. Thus, the host
ends up sending the packet to the SDN switch (and not to the switch
which actually possessed the true MAC address), and a packet is re-
routed. The SDN switch receives the diverted packet, then forwards it
towards the destination. Since the MAC addresses are reset periodically
after some time, the SDN controller needs to send the seed packet time
and again. Further, if the seed packet arrives late, path flipping may
occur. To overcome this, the SDN controller sends the seeds packets
quite frequently.

To overcome the problem of path flipping, in their next work, Jin
et al. (2017) propose a unified controller called “Magneto”. Magneto
introduces the concept of magnet MAC addresses. These magnet
addresses are a set of IP addresses that don't exist in the network.
These MAC addresses are mapped to the actual IP addresses of hosts
using gratuitous ARP messages. SDN switches can send seed packets
with MAC address set as the magnet address of the destination host
and send them to the source host. This causes a path to be set up
between the source host and the SDN switch. Due to gratuitous ARP
message, the source host has the magnet MAC address of the
destination host instead of the real MAC. Hence, a packet from source
host is routed towards the SDN switch. The SDN switch has necessary
flow entries to fix the ethernet packet header by changing destination
MAC address from magnet address to the real one and the source MAC
address to a magnet address.

He and Song (2015) provide a formulation of the TE problem by
considering the two hybrid modes, namely barrier mode and hybrid
mode. In barrier mode, the SDN traffic and legacy traffic is routed in
separate capacity spaces, whereas in the hybrid mode the link capacity
is shared by both SDN and legacy traffic. Hong et al. (2016) propose an
architecture to achieve TE in hybrid SDN network. They suggest two
load balancing heuristics, according to which the TE module installs
the rules in SDN devices and divert the packet to less loaded links.

6. Addressing challenges in hybrid SDN

In this section, we discuss the challenges that come in the
deployment of SDN paradigm in the existing network to bring up the

49

Journal of Network and Computer Applications 100 (2017) 35-55

hybrid SDN network. For example, an organization may need to decide
the locations where the existing nodes are replaced by SDN nodes. This
decision may depend on traffic patterns, budget constraints, user
requirements etc. We categorize and discuss the work done by
researchers for each issue as summarised in Table 2.

6.1. Topology discovery

Topology discovery is a crucial component in SDN networks as
network applications depend on this information to configure and
manage the network such as making routing decisions. Furthermore,
applications need to know about the complete network topology in
order to make optimal routing decisions. Also, the controller requires
an up-to-date real time discovery mechanism to detect events like link
failures to respond quickly. Secondly, the controller load and perfor-
mance is critical for the scalability of a Software Defined Network
(Tootoonchian et al., 2012). Since topology discovery is a service that
typically runs continuously in the background on all the SDN con-
trollers, it exerts considerable load. Moreover, the increased number of
control messages used for topology discovery clogs switch to controller
communication especially in in-band networks and load on the SDN
switches also becomes high (Pakzad et al., 2014, 2016).

In hybrid networks, topology discovery becomes even more difficult
due to a number of factors such as: presence of nodes supplied by
different vendors; different protocols supported by different nodes to
different degrees such as SNMP, OSPF, BGP etc.; inability of other
nodes to understand proprietary protocols of other vendors; inability of
non-SDN nodes to communicate with the controller; presence of
firewalls, middleboxes etc.; dynamic changes in network such as link
failure, node going down and many more. In this section, we attempt to
address the main protocols and approaches to the topology discovery
that can be leveraged for topology discovery service in a controller in
both full SDN networks and hybrid SDN networks. Table 4 gives an
overview of topology discovery.

6.1.1. Layer 2 protocols

6.1.1.1. LLDP (BDDP) based mechanisms (OFDP). Several researchers
(Ochoa Aday et al.,; HP SDN?, Pakzad et al., 2014, 2016; Fu et al., 2014;
Kandoi, 2015,; Hong et al., 2016) have used various LLDP based
mechanisms to discover end hosts and links. This has been referred as
OFDP (OpenFlow Discovery Protocol) (OpenFlowDiscoveryProtocol;
Pakzad et al., 2014, 2016). After switch features reply (i.e., after a TCP
(Transmission Control Protocol), a connection has been formed between
the controller and the switch. The controller periodically, say every 5 Sec,
commands the SDN switch to flood LLDP and BDDP (Broadcast Domain
Discovery Protocol) packets through all of its ports and send back the
responses back to the controller to detect direct links (between switches)
and the switches respectively. The LLDP packets are received by the
controller from the legacy devices via the SDN switches. These packets
have the PTOPO-MIB field (Physical Topology Management Information
Base) which contains information about the SDN device to which it is
connected. Thus, this link is discovered. Further, there is no controller
identifier in the packet when the legacy device sends an LLDP packet to
the SDN device. This property is used by the controller to infer that the
SDN switch is connected to a legacy switch. The network application can
use these bits of information to correctly construct the topology
information.

6.1.1.2. OFDPv2-A, OFDPv2-B. Pakzad et al. (2014, 2016), propose
that as opposed to OFDP, where we send a unique packet for each port

2 https://community.arubanetworks.com/aruba/attachments/aruba/SDN/43/1/
4AA5-6738ENW.PDF.

Journal of Network and Computer Applications 100 (2017) 35-55

Sandhya et al.

‘[unyopInS-1esn-upsydurus /opms-1osn /uo10q-s[qels/us /310 ysiLepuadosoop//:dny

‘yoroxdde 3unyel swn e SI ['TD

*JIANS 1oddns sa01A9p [10N

Joxeads goHg auo

1SBJ] 1B 9ARY 1SNUI UTBWIOP YoRH

amn EhlicRAEINI (b}
AdSO 01 onp Aduare

age)s [eyuswILIadxe 1y

sy
/sa01a0p AoeSa[10939p JouuR)

sagessouwl [01U0OD JO 10] ¥
Atowowr WyDL

ss9[s9sn g-gAd A0 "Youms 1od
QU0 ATUO 0] PIJNPal ST sedessowr
MO-1YPRd dA'TT JO JoqunN

‘pIepURIS B 10U ‘SOYIIIMS
£9e39] 10A00SIp j0UUR)
[BUOTYIPRI) 3IB SOYDIIMS

91BIPOULIIUL JT ‘S[IR] ‘Paldalop
9q ued sayoms mopjuadp AuQ
SUI] NS-UOU 10919p

jou ue)‘uoneoywads mopquadQ
ut Teuondo st 110ddns

s) ySnoyie 1od [euriou sasn

110ddns Jopuaa-nnIy ‘SursdLIel
£aadoad 110d /yoimg ‘Surasiiel onsnels
‘uoneIngyuod Mo ‘uoneindyuod NvIA
‘sayoums Jo uoneindyuoo Arejaridorg

Sapou pajqeud Jog 10§ [Jos)
Anqqeradorsjut

110ddng ‘uo10919p aan[rey ut 3ISnqoy

4dsO

9sn 1y} SWISIUBYPSW 10] A[Iqeradotaul
uonerolsal ut paddoap syexoed

Ma] ‘193311] JueAd dZurRYd UI[ISNqOY

[1om se

£19A0021 21n[re} 10j wstueyoaw sasodord

‘Te 10 Aepy
BOUD(URY] SaSeSSaW 19mdJ %Gt 01dn

Aduare| o197

yoeoidde onsydung

I9][011U0D DY} WOIJ
1uas aq 01 paxmbai a1e safessow ou
os ‘dex) e spuas A[[eonjewOINE YOIIMS

ALAT 1e 9Se1s JeIp ul [000101d

sdeny JIANS Jo aseo ur parmbaix
safessowr e11xa ON‘A[[eorporrad
paSueyoxe safessowl JO JUNOWR PaxXI]
10309]Ja1 91N0I

J59 9] B se s1o' Jd[jonuo) ‘sjoyoed
d94g ut s[000101d urewop-enui sy Aq
PaI9y1eS UOHBWLIOJUT 918]S Ul A11R)

(d1S £q paremores syied jo Jaqunu)Q

SAYOIIMS JO I9QUINU A} ST N 919YM
“I9[[01IU0D JY} e pauTtejurew (,N)O

SOUDUMS JO ToquInN :sogessaur
MO-193d JA'TT JO JdqUINN
SUI] JO IoqUINN,g :ul-}oyoed [e10],

SYUI[JO qUINN¢ Ul

-190ed [e10], s110d 9A1OR JO IOqUINN
» SOUDIMS JO Joquiny :sogessaut
NO-1YPRd dATT JO equnN
SYDIIMS PI[OIUOD [[B 0] SITILI INOJ
soysnd pue yIomiau a1} ojur s}oxoed
daag swafut se[jonuod Kem syl 01
reuonodoad st saessaw Jo JaquInN

deny JINNS

SuIsSn 90ULISIXD S,[OIIMS [RUOIIIPERI]
JO I9[[0NU0D dY} AJIoU A[PATOROIJ
SdOI a3 Aq paroyred

UONBULIOJUT 91BIS-UI] SILLIRD O

sden JMINS UIED
‘sadessowl O[[9H pu® SYST AdSO 9s1ed

Pa1sa38ns swistueydLaW JO Joquini Y
193311} JUaAd

agueyp Yui| s,9an Sutuueds uo paseqg
syoypoed gq11 Suisn

XO0d ul uonejuswa[dwr prepuels
syed jusoyIe

‘aaneuIs)[e puy o1 a[qey doof pue d[qe}
Aousoe(pe Sulsn WSIURYISW PadURYUY
Ppoonpair Apueoyrusis

5198 YoIMS NS 9Y} PUB IS[[0I1U0D Y}
1e pa[puey s9gessaul [01U0D JO IquInu
a1 181} 0S [k 19 ABPY BOTO() JO JUBLIEA
pasn are J:JJ

JJ:JJ:33:] SSSIPPe DVIA UONBULISOp pue
6668 x 0 9d&1 @ M sxped Jaad

a8essoJy 1sanbay a1njes,y mojjuado
(s13pord MOV/Ie50 dOHA pue

159nba1/19400s1p JOHAJ ‘d¥V Sutddoo
‘daag Suifeals) :s9[NI INoJ [[eIsul

SYuI| pue
SI9INOI ‘SaYIIIMS
NASUON/NAS

SYury

SIOMOI puE SYUI']

SI9]NO0J pue syury

A19A0001 dIn[req

SYUI] NdS

SYUI] NdS-UON

SYUI] NdS-UON

SYUI] NdS-UON

squIq
pue sepou NS

SIIAIP
NAS udamIaq
uy ‘sisoy pug

daTT ‘T10 ‘dIANS
S1-dod ‘61

AdSO ‘€1

‘dIANS ‘ddTT ‘dadd ‘¢l
ST-dOd ‘ST ‘AdSO

€T ‘dIANS ‘ddTT :¢1
dIS:¢1

ddTI:¢T

ddTI:¢T

¢Addd0 ‘dddo ‘daT1:eT

daag:e1
(1020101d
SUONBOIUNWWO))

moquedQ ‘da 111

JdOHA:¢T ‘d¥V ‘dadd:e

wnIARg :NASHdINNS

(STOT)Te 3@ Io[pa1D)

(9102) 'Te 3 SuoH

(S102) 10pUey

(€102 ‘1102) ‘Te 1 euLRys

(#T0g) NeIno, pue [ewp

(91072) 'Te 10 BYES

(9102 ¥102) T8 ¥ pezied

(S102) ‘[1° Aepy BOUYOQ

Nds dH

suonewry

sgyoudg

peayaaaQ /Axsiduio)

WISTURYIIN

P319A00SIp
d1Qq

S[0201044 :J9Ke]

ADURIIIY

*K19A00s1p £30[0d0] JO MIIAISAQ
P SlqeL

50

http://docs.opendaylight.org/en/stable-boron/user-guide/snmp4sdn-user-guide.html

Sandhya et al.

for every switch; in OFDPv2-A, we send only one packet per switch.
The source MAC address is used to identify ports, uniquely since the
switch cannot rewrite Port ID of LLDP payload. Version 2-B is an
enhancement to use less TCAM (Ternary Content Addressable
Memory) memory. This approach reduces the number of control
messages by almost 45% as compared to OFDP protocol. Thus, this
can be effective where a switch to controller communication is likely to
be clogged.

6.1.1.3. STP. The STP protocol is helpful for link discovery. In Kandoi,
(2015) and Jmal and Fourati (2014), the authors suggest that STP can
be beneficial, especially in the cases where dynamic and robust
detection of link failures is the need of the hour. OpenFlow 1.3 (Ben
et al., 2012) provides mechanisms to detect STP changes, configure
STP options, port configurations, etc. An example has been explained
in detail in Ryu book. As soon as an STP recalculation is triggered
(either due to changes in path's weight or link/node failure) the packets
can be copied to and parsed at the controller to detect changes quickly.
The ports which have been blocked by STP can be used by the
OpenFlow to transmit control traffic or load balancing, thereby
improving overall network utilization.

6.1.1.4. Table driven based topology discovery. Saha et al. (2016)
propose a set of steps for topology discovery, loop finding, and failure
recovery. Initially, a procedure maps the hosts to the ports of the
switches. Subsequent procedures detect links between the switches
using LLDP packets. Consequently, the controller finds a path between
every pair of switches. Lastly, the controller runs a procedure to find an
alternative path in case of a link failure. The key idea is to maintain
adjacency and loop tables to find alternatives. Although there is a
feature of failure recovery a lot of control packets'’ are generated.

6.1.2. Layer 3 protocols

6.1.2.1. S-IS, OSPF. If the legacy nodes support IGP protocols such as
OSPF and IS-IS, these packets can be sent to the controller to discover
topology. The Link state advertisements and Hello messages of IGP
protocols such as OSPF are redirected to the controller where it is
parsed to generate the topology (Kandoi, 2015; Hong et al., 2016). Not
only this procedure is good to discover topology and topology changes,
but also it can detect nodes from different vendors. However, this
method is useful only for Layer 3 devices.

6.1.2.2. ARP, DHCP. In HP SDN, the authors propose the idea to
copy, steal, modify or redirect packets of ARP and DHCP (Dynamic
Host Configuration Protocol) protocols to sniff topology details. As
soon as a new switch registers itself at the controller, the controller
installs four rules: steal BDDP packets from the network to the
controller and copy ARP, DHCP discover/request as well as DHCP
offer/ack packets from the network to the controller. While BDDP
packets are used to detect links between SDN devices, ARP and DHCP
packet sniffing is to learn about end hosts.

6.1.3. Application layer protocols

6.1.3.1. CLI. This approach involves the usage of command line

10 packets generated for network management such as DHCP packets, OpenFlow
packets are called control packets.

51

Journal of Network and Computer Applications 100 (2017) 35-55

interfaces (CLI), scripts that mimic the functioning of an
administrator. The controller programmatically logs in and alters the
configuration of the router/switch using commands like Telnet, etc.
(Mishra et al., 2016; SNMP4SDN:Beryllium'"). Python modules such
as expect can mimic a network administrator using Telnet on the
switch. This is a poor approach, but can be used as fallback
mechanisms in case all other mechanisms fail to work. But there are
certain features in this approach which are not available elsewhere. For
example, if with the help of CLI, the switch is configured to remote log
events to the controller, the controller can make efficient use of the
traditional topology discovery mechanisms like OSPF convergence.

6.1.3.2. BGP-LS. In Kandoi, 2015 and Gredler et al. (2015), the
authors refer to an extension to BGP enabling it to carry link-state
information gathered by the IGPs. The controller as a BGP route
reflector can discover the topology. One or more Link-State NLRIs
(Network layer Reachability Information) are contained in a BGP
message. A Node NLRI uniquely identifies the router, a Link NLRI
uniquely identifies a link, and a Prefix NLRI uniquely identifies an IPv4
or IPv6 Prefix originated by the BGP speaker.

6.1.3.3. SNMP. SNMP has been traditionally used to detect device
failures and node reboots. The same idea can be extended for detecting
the events in hybrid SDN by setting the remote IP as the IP address of
the controller to which the traps are sent. Pakzad et al. (2014, 2016),
Kandoi, 2015, SNMP4SDN:Beryllium and Hong et al., 2016 suggest
and analyze the benefits of this approach. There are a variety of traps
which can help to detect a lot of events in the dynamic network such as
the connection of a new switch or link failure.

6.2. Configuration

Network configuration is one of the important functions of network
management. Network configuration management process organizes
and maintains the information about all the components in the
network. This information is used, when a network needs to be
updated, repaired or expanded. When a change happens in the network
(e.g., topology change, node replacement etc.), the SDN nodes are
configured by the SDN controller using OpenFlow protocol. Since the
legacy nodes cannot support OpenFlow protocol, they can not be
configured directly by the SDN controller. The legacy devices are
configured manually, which can lead to misconfiguration or errors. In
hybrid SDN, the network administrator may have to use vendor specific
network configuration and management tools. These tools work only
with the products of a single vendor and meant to be used for a legacy
network. This further complicates the issue. The controller can use CLI
such as telnet to configure the legacy nodes, but the support is limited.
For example, with telnet, we can not modify the IP address of a packet
header. This issue is further magnified by multiple software versions,
different vendors and limited support for protocol translation at the
SDN controller.

Lu et al. (2013) propose HybNET, a framework to automate the
network management of a hybrid SDN network. HybNET provides a
centralized control to the network operator by hiding the dissonance
between legacy and SDN nodes. It provides a common configuration
mechanism for both legacy and SDN nodes by translating configuration
of the legacy devices into OpenFlow configuration.

ClosedFlow (Hand and Keller, 2014) provides an idea of making
current networks centrally controllable by configuring each interface of

11 http://docs.opendaylight.org/en/stable-boron/user-guide/snmp4sdn-user-guide.
html.

Sandhya et al.

the router. But, the implementation of ClosedFlow is limited to the
devices that support functionality like ACLs, Route maps.

Katiyar et al. (2015) propose a method for automated SDN
deployment with a focus on automating the configuration of SDN
switch installation in SDN/hybrid networks. The aim is to minimize the
risk of errors in the manual configuration and reduce the operational
cost. They propose components such as Locator and Configurator. The
new SDN switch is referred as AutoConfClient (ACC) which acts as a
DHCP client and sends DHCP Discover message (with SDN option 222
added in the DHCP option field) to AutoConf Server (ACS). The ACS
calls an Intermediate Switch Configurator (ISC) component to config-
ure both intermediate SDN and non-SDN switches to provide con-
nectivity between the newly added SDN switch and the SDN controller.
After configuration of intermediate switches, ACS sends the configura-
tion parameters as a reply to the newly added SDN switch, which is
then used in the controller registration process.

6.3. The placement problem

While we transit from the legacy network to SDN via a hybrid SDN
model, we need to choose the subset of legacy nodes (number and
location) to replace with SDN nodes based on factors such as budget &
resource constraints, traffic matrix, network topology and performance
benefits. This decision making can be viewed as an optimization
problem with objectives of maximum link utilization, minimal disrup-
tion, maximum benefit to budget ratio etc. subject to constraints like
hardware lifecycle management, long-term evaluation etc. However,
this problem is difficult to solve, therefore, many heuristics such as
node degree, egress traffic volume, link weights have been studied by
the researchers as criteria for placement.

Hong et al. (2016). formulate the problem of SDN deployment in
the legacy network with a bilinear term of unknowns and solving the
unknowns is NP-complete. Further, they provide heuristics for SDN
node placement by replacing the existing nodes. The first heuristic
picks up a legacy node with the highest degree in the network topology
graph. The second heuristic uses K-shortest path algorithm to find the
path between all source and destination pairs and selects the nodes
which have the highest frequency of occurrence in these paths. In the
third heuristic, the legacy nodes are selected for the replacement with
higher traffic volume. Caria et al. (2015b) propose a method for SDN
device deployment in Open Shortest Path First (OSPF) network. The
existing network is partitioned into sub-domains by strategic place-
ment of SDN nodes. The placement is done such that removal of SDN
nodes partitions the network into disconnected components. In the
case of failure of the sub-domain border node, OSPF provides the
alternative path via other border nodes.

Levin et al. (2014) propose two heuristics for the placement of SDN
nodes, namely VOL and DEG. VOL takes the volume of traffic passed
through a switch as selection criteria for legacy device replacement
whereas DEG replaces the legacy switch with a higher degree in the
topology graph.

6.4. Conflicts in hybrid control planes

Hybrid networks are difficult to manage compared to legacy or pure
SDN networks, because of the simultaneous presence of legacy and SDN
control planes. Any update in the hybrid network can trigger a forwarding
inconsistency, which may lead to disruption in traffic engineering and
routing policies (like bypassing a firewall) or can lead to the formation of
forwarding loops. This requires a conflict resolution mechanism.

Fundamentally, there can be two approaches for conflict resolution.
A straightforward way is to let the control planes interact with each
other and resolve conflicts with mutual understanding based on
mechanisms such as protocol translation. For example, a controller
may parse and inject packets of legacy protocol to mutually under-
stand, assist and avoid possible routing conflicts. Another approach is

52

Journal of Network and Computer Applications 100 (2017) 35-55

to let the control planes manage separate entities like services, traffic
classes, etc. For example, the different paradigms may choose to extend
different services (say DNS and routing) or control separate groups
within the same service (separate traffic classes while routing or DHCP
for hosts in different regions). Some of the solutions proposed by
different researchers are the following.

Vissicchio et al. (2013) give an algorithm Generic Path
Inconsistency Avoider (GPIA), to avoid inconsistencies in the forward-
ing entries. GPIA computes a sequence of nodes that can be configured
without creating inconsistency in the network in the following manner.
For each destination, GPIA iteratively creates a set of nodes that can be
configured without any inconsistency in the network. GPIA picks up
any node from the intersection of all computed sets until the intersec-
tion returns an empty set. At the end, if the computed sequence
involves all the nodes that exist in the network, then the algorithm
returns the sequence else it backtracks to the previous step and chooses
a different node from the intersection. Finally, the algorithm returns
the sequence of nodes for reconfiguration. However, the algorithm is
dependent on recursion tree generation in the backtrack phase and
limited to the co-existence of SDN and IGP only.

Parniewicz et al. (2014) introduce “Hardware Abstraction Layer”
(HAL) architecture, that provides compatibility between current ver-
sions of OpenFlow protocol and network devices (both legacy and
SDN). New packets in the network are forwarded to HAL, which parses
these packets, provides a device dependent configuration and installs
the flow entries in the underlying heterogeneous devices.

6.5. Controller-switch communication

In the SDN architecture, the controller is typically a remote entity.
The SDN nodes proactively establish a TCP connection to the SDN
controller. This incurs latency in communication. Whereas, in the
legacy networks the control functionality sits within the forwarding
device itself, so no controller-switch communication delay occurs.

In SDN nodes, the forwarding decisions are taken based on the
complete topology view. Whereas, in legacy nodes, the forwarding
decisions are taken based on local information. Since the SDN nodes
are controlled by the SDN controller using OpenFlow protocol and
legacy nodes are designed to be controlled by distributed routing
protocols like OSPF; in hybrid SDN, to provide communication
between the SDN controller and legacy nodes is not trivial. This can
be achieved with the help of a translator module, which can exist as a
plugin in the SDN controller, like SNMP4SDN"?, This translation can
be full or limited. There is a trade-off between performance gain and a
number of features enabled by the controller.

The communication can be in-band or out-of-band. In in-band
communication, the control traffic is sent on the same link which is
used to send the data traffic. Thus, there is no extra cost incurred for
new link hardware. However, this can cause network congestion. In
out-of-band communication, a dedicated link is used for control packet
transmission. This decreases communication latency. It incurs a cost
and requires management of out-of-band links between nodes in the
network and the SDN controller.

Feng and Bi (2015) propose a system of an OpenRouter along with
an OpenRouteFlow controller which by the means of software upgrade
achieves the following: it makes the router OpenFlow compatible,
enables dynamic push of routes using ACLs and improves the
visualization of global routing and flow views. This can help to achieve
a unified routing view in hybrid models and reduce the deployment
costs by a significant margin.

Parniewicz et al. (2014) propose HAL, which provides an abstrac-
tion to the real network that consists of legacy and SDN nodes. HAL

12 http://docs.opendaylight.org/en/stable-boron/user-guide/snmp4sdn-user-guide.
html.

Sandhya et al.

takes the network packet, processes it through the OpenFlow pipeline
to apply the changes and the translator module translates these
changes into commands specific to the platform of underlying physical
devices in the network.

In ClosedFlow (Hand and Keller, 2014), the SDN controller uses
SSH or telnet to install the flow entries in the forwarding table of
switches. The switch uses remote logging to communicate the adja-
cency changes to the controller.

Caria et al. (2015b) propose “Hybrid Network Manager” (HNM)
module to provide traffic engineering in a hybrid SDN network. The
SDN nodes behave like traditional OSPF devices in the initialization
phase. Once the HNM module gets all information about the network,
the traffic engineering module in HNM computes the optimal route and
sends these routes using tuned LSA through the SDN controller to SDN
nodes. The SDN nodes distribute these routes further in the sub-
domain by flooding.

6.6. Scalability

With the incremental deployment of SDN nodes, the overhead on
the SDN controller increases. To overcome this issue, more SDN
controllers can be deployed in the network to distribute the load.
Distributed controllers have some limitations. Firstly, this can stretch
the path of a packet. Secondly, re-configuration and mapping between
the SDN controller and devices are required. Dixit et al. (2013) propose
an ElstiCon architecture, where the controllers initially operate at pre-
defined load window and as the load changes over the time, ElstiCon
dynamically shifts the workload among the controllers. This is done by
moving some of the SDN nodes from a heavily loaded controller to
lightly loaded controller. Fu et al. (2014) propose a hierarchical
architecture for the control plane to provide scalability in SDN
networks.

6.7. Traffic engineering

The main goal of traffic engineering is the optimization of network
performance to facilitate the reliability of network operations
(Awduche et al., 2002). This can be achieved by making the network
fault tolerant and congestion-free by balancing the load on the links,
etc. In hybrid SDN, it is difficult to provide TE, as the legacy devices are
not under the control of the SDN controller fully. The rules which the
SDN controller enforces to provide TE, are applicable only on SDN
nodes in general, leaving the behavior of legacy devices un-altered.

6.7.1. Load balancing

Vanbever and Vissicchio, 2014 propose an architecture, which takes
physical topology & path requirements as input and produce an aug-
mented topology. The augmented topology considers all path require-
ments, which are needed to provide load balancing in order to avoid
congestion (Vanbever and Vissicchio, 2014). Hong et al., (2016)
propose a TE module for load balancing. Whenever a new flow comes,
the TE module routes it on the least loaded path. The SDN controller
uses meter table feature of OpenFlow 1.3 (Ben et al., 2012) to retrieve
the link-load dynamically. However, this is possible only if the flow
traverses at least one SDN node.

Caria et al. (2015b) propose a module called “Hybrid Network
Manager” (HNM). The main functionality is to gather the information
about the network viz., topology, traffic in the network, the position of
SDN nodes and routing. In HNM, a module called Traffic Engineering
Engine (TE engine) provides the optimal routing based on the
information collected by HNM. The TE engine module is aware of
the partitioning of the network. It provides load balancing by the
optimal sub-domain routing for load balancing and computes the OSPF
link metric accordingly. The metrics are then flooded as LSAs into the
individual sub-domains. The computed routes are forwarded to the
SDN controller which is then forwarded to SDN nodes by the SDN

53

Journal of Network and Computer Applications 100 (2017) 35-55

controller. He and Song (2015) provide the TE problem formulation for
two cases. In the first case, legacy traffic and SDN traffic is routed in
separate link capacities, whereas in the second case, the link capacity
can be occupied by either SDN or legacy traffic.

Guo et al. (2014) propose an algorithm named SDN/OSPF Traffic
Engineering (SOTE) to explore traffic engineering in hybrid SDN
network. The goal of their work is to minimize the maximum link
utilization. They run the SOTE algorithm and change the weights of the
links in each iteration. After obtaining the weight settings, they
construct a directed acyclic graph (DAG) by choosing a node and find
the shortest path to all other nodes with respect to the chosen one.
After construction of DAG, the flows are split at SDN node by adding
the outgoing link from SDN the node to the DAG. If a loop is formed by
adding the link, that link is removed.

6.7.2. Fault tolerance

Chu et al. (2015) provide fault tolerance by redirecting the traffic to
an SDN switch, in case a link-failure happens. It provides a backup IP
tunnel, through SDN switch, for all the destinations from a router that
is affected by a link failure.

Caria and Jukan (2016a) propose an idea of SDN partitioning, to
partition the legacy network into sub-domains. In legacy networks, to
deal with network failures a fraction of link capacity is preserved. This
preserved link capacity is not used under normal condition. This paper
shows that the proposed SDN partitioning mechanism requires less
amount of spare capacity than a legacy network.

7. Related work

Nunes et al. (2014) present an overview of SDN, starting from its
earlier ideas to the recent development. They also talk about challenges
posed by the SDN and propose directions for future work. Kreutz et al.
(2015), give a comprehensive survey on SDN. They also perform a
comparative analysis of the SDN paradigm and traditional paradigm.
Further, they explain the SDN layered architecture and cross-layer
problems such as troubleshooting and debugging.

Xia et al. (2015) survey latest developments in SDN. They state the
general definition of SDN followed by the SDN benefits and research
challenges. Further, they explain the layered architecture of SDN and
OpenFlow standardization and deployment.

Jarraya et al. (2014) delineate the details of SDN roots and the
main components of the SDN architecture. They propose a taxonomy,
where they classify the issues in SDN and research work done for each
issue at each layer. They lay out the inter-layer issues as well.

Hu et al. (2014) provide the architectural details of SDN and
OpenFlow. Next, they present a survey of work done by the researchers
in SDN/OpenFlow. Gong et al. (2015) provide a background of SDN,
SDN architecture and research work done on SDN components and
applications.

All the survey papers till date discuss the latest developments and
deployments related to the SDN paradigm. To the best of our knowl-
edge, this is the first survey paper on hybrid SDN. In this paper, we
have provided the various models suitable for transition to SDN from
the traditional network and compared them on various characteristics
such as investment, automation, traffic management and scalability.
We present the different approaches taken by the researchers to deploy
SDN devices in the industry and the academia. We portray the research
challenges in hybridization of the two paradigms.

8. Conclusion

Although SDN has the potential to solve the present day complex
operational problems of networking, there are various deployment
issues. Especially for existing deployments, a smooth transition ap-
proach is required that meets the budget constraints, has a disruption-
free phased transition model and can fallback safely to legacy mechan-

Sandhya et al.

isms so as to build confidence. Therefore, researchers have proposed
hybrid SDN models for various use cases and transition scenarios
(Vissicchio et al., 2014a). Hybrid SDN can mitigate the challenges of
both SDN and legacy networks and can provide models that take into
account benefits of both. We present a detailed comparison of various
models and techniques proposed and implemented currently by the
research community and discuss challenges yet to be addressed.

References

Agarwal, A., Gupta, S., Talwar, A., 2015. A hybrid approach to networking: Integrating
OpenFlow and legacy switches using OpenDayLight. URL: (http://docplayer.net/
32607513-Telecom-white-paper-a-hybrid-approach-to-networking-integrating-
openflow-and-legacy-switches-using-opendaylight.html).

Agarwal, S., Kodialam, M., Lakshman, T., 2013. Traffic engineering in software defined
networks. In: INFOCOM, 2013 Proceedings IEEE, IEEE, pp. 2211-2219.

Atlas, A., Nadeau, T., Ward, D. 2013. Interface to the routing system framework, URL:
(https://www.ietf.org/archive/id/draft-ward-i2rs-framework-00.txt).

Awduche, D., Chiu, A., Elwalid, A., Widjaja, 1., Xiao, X., 2002. Overview and Principles of
Internet Traffic Engineering. RFC, 3272, (Tech. rep.).

Balus, F., Bitar, N., Ogaki, K., Stiliadis, D., 2013. Federated sdn-based controllers for
nvo3. URL: (https://tools.ietf.org/html/draft-sb-nvo3-sdn-federation-01).

Belter, B., Parniewicz, D., Ogrodowczyk, L., Binczewski, A., Stroifiski, M., Fuentes, V.,
Matias, J., Huarte, M., Jacob, E., 2014. Hardware abstraction layer as an SDN-
enabler for non-OpenFlow network equipment. In: 2014 Third European Workshop
on Software Defined Networks, IEEE, pp. 117-118.

Benson, T., Akella, A., Maltz, D., 2009. Unraveling the complexity of network
management. In: Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI'09, USENIX Association, Berkeley, CA,
USA, pp. 335-348. URL (http://dl.acm.org/citation.cfm?Id=1558977.1559000).

Boucadair, M., Jacquenet, C., 2014. Software-defined networking: A perspective from
within a service provider environment. URL: <https://tools.ietf.org/html/rfc7149>

Caesar, M., Caldwell, D., Feamster, N., Rexford, J., Shaikh, A., van der Merwe, J., 2005.
Design and implementation of a routing control platform. In: Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation-Volume
2, USENIX Association, pp. 15-28.

Cao, Z., Kodialam, M., Lakshman, T.V., 2014. Traffic steering in software defined
networks: Planning and online routing. In: Proceedings of the 2014 ACM SIGCOMM
Workshop on Distributed Cloud Computing, DCC ’14, ACM, New York, NY, USA, pp.
65-70. (http://dx.doi.org/10.1145/2627566.2627574).

Caria, M., Jukan, A. 2016a. Link capacity planning for fault tolerant operation in hybrid
SDN/OSPF networks. In: Global Communications Conference (GLOBECOM), IEEE,
2016, pp. 1-6.

Caria, M., Jukan, A., 2015a. The perfect match: Optical bypass and SDN partitioning, in:
2015 IEEE 16th International Conference on High Performance Switching and
Routing (HPSR), IEEE, pp. 1-6.

Caria, M., Jukan, A., Hoffmann, M., 2016b. SDN partitioning: A centralized control plane
for distributed routing protocols. In: IEEE Transactions on Network and Service
Management, vol. 13, IEEE, pp. 381-393.

Caria, M., Das, T., Jukan, A., 2015b. Divide and conquer: Partitioning OSPF networks
with SDN. In: 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), IEEE, 2015, pp. 467—-474.

Casado, M., Garfinkel, T., Akella, A., Freedman, M.J., Boneh, D., McKeown, N., Shenker,
S., 2006. Sane: A protection architecture for enterprise networks. In: Usenix
Security.

Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S., 2007. Ethane:
Taking control of the enterprise. In: ACM SIGCOMM Computer Communication
Review, Vol. 37, ACM, pp. 1-12.

Casado, M., Koponen, T., Shenker, S., Tootoonchian, A., 2012. Fabric: a retrospective on
evolving SDN. In: Proceedings of the first workshop on Hot topics in software
defined networks, ACM, pp. 85-90.

Chu, C.-Y., Xi, K., Luo, M., Chao, H.J., 2015. Congestion-aware single link failure
recovery in hybrid SDN networks. In: 2015 IEEE Conference on Computer
Communications (INFOCOM), IEEE, pp. 1086—1094.

Dixit, A., Hao, F., Mukherjee, S., Lakshman, T., Kompella, R., 2013. Towards an elastic
distributed SDN controller. In: ACM SIGCOMM Computer Communication Review,
Vol. 43, ACM, pp. 7-12.

Enns, R., Bjorklund, M., Schoenwaelder, J. , 2011. Network configuration protocol
(netconf), Network.

Feng, T., Bi, J., 2015. OpenRouteFlow: Enable legacy router as a software-defined
routing service for hybrid SDN. In: 2015 24th International Conference on Computer
Communication and Networks (ICCCN), IEEE, pp. 1-8.

Fu, Y., Bi, J., Gao, K., Chen, Z., Wu, J., Hao, B., 2014. Orion: A hybrid hierarchical
control plane of software-defined networking for large-scale networks. In: 2014
IEEE 22nd International Conference on Network Protocols, IEEE, pp. 569-576.

Fuentes, V., Matias, J., Mendiola, A., Huarte, M., Unzilla, J., Jacob, E., 2014. Integrating
complex legacy systems under OpenFlow control: The DOCSIS use case. In: 2014
Third European Workshop on Software Defined Networks, IEEE, pp. 37-42.

Gong, Y., Huang, W., Wang, W., Lei, Y., 2015. A survey on software defined networking
and its applications. Front. Comput. Sci. 9 (6), 827-845.

Guo, Y., Wang, Z., Yin, X., Shi, X., Wu, J., 2014. Traffic engineering in sdn/ospf hybrid
network. In: Network Protocols (ICNP), 2014 IEEE 22nd International Conference
on, IEEE, pp. 563—-568.

54

Journal of Network and Computer Applications 100 (2017) 35-55

Hand, R., Keller, E., 2014. ClosedFlow: OpenFlowlike control over proprietary devices.
In: Proceedings of the third workshop on Hot topics in software defined networking,
ACM, pp. 7-12.

Hartert, R., Vissicchio, S., Schaus, P., Bonaventure, O., Filsfils, C., Telkamp, T., Francois,
P., 2015. A declarative and expressive approach to control forwarding paths in
carrier-grade networks. In: ACM SIGCOMM Computer Communication Review, Vol.
45, ACM, pp. 15-28.

Hartman, S., Wasserman, M., Zhang, D., 2013. Security requirements in the software
defined networking model, IETF Draft (draft-hartman-sdnsec-requirements), URL:
(https://tools.ietf.org/html/draft-hartman-sdnsec-requirements-00).

He, J., Song, W., 2015. Achieving near-optimal traffic engineering in hybrid software
defined networks. In: IFIP Networking Conference (IFIP Networking), 2015, IEEE,
pp. 1-9.

Hong, D.K., Ma, Y., Banerjee, S., Mao, Z.M., 2016. Incremental deployment of SDN in
hybrid enterprise and ISP networks. In: Proceedings of the Symposium on SDN
Research, 2016, ACM, pp. 1.

Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., Wattenhofer, R.,
2013. Achieving high utilization with software-driven WAN. In: ACM SIGCOMM
Computer Communication Review, Vol. 43, ACM, pp. 15-26.

Hu, F., Hao, Q., Bao, K., 2014. A survey on software-defined network and openflow: from
concept to implementation. IEEE Commun. Surv. Tutor. 16 (4), 2181-2206.

Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer,
J., Zhou, J., Zhu, M., et al., 2013. B4: experience with a globally-deployed software
defined wan. ACM SIGCOMM Comput. Commun. Rev. 43 (4), 3—-14.

Jammal, M., Singh, T., Shami, A., Asal, R., Li, Y., 2014. Software defined
networking: state of the art and research challenges. Comput. Netw. 72, 74—98.

Jarraya, Y., Madi, T., Debbabi, M., 2014. A survey and a layered taxonomy of software-
defined networking. IEEE Commun. Surv. Tutor. 16 (4), 1955-1980.

Jin, C., Lumezanu, C., Xu, Q., Zhang, Z.-L., Jiang, G., 2015. Telekinesis: Controlling
legacy switch routing with OpenFlow in hybrid networks. In: Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research, ACM, p. 20.

Jin, C., Lumezanu, C., Xu, Q., Mekky, H., Zhang, Z.-L., Jiang, G. 2017 Magneto: Unified
fine-grained path control in legacy and openflow hybrid networks. In: Proceedings of
the Symposium on SDN Research, ACM, pp. 75-87.

Jmal, R., Fourati, L.C., 2014. Implementing shortest path routing mechanism using
Openflow POX controller. In: The 2014 International Symposium on Networks,
Computers and Communications, IEEE, pp. 1-6.

Kandoi, R., 2015. Deploying software-defined networks: a telco perspective.

Katiyar, R., Pawar, P., Gupta, A., Kataoka, K., 2015. Auto-configuration of SDN switches
in sdn/non-sdn hybrid network. In: Proceedings of the Asian Internet Engineering
Conference, ACM, pp. 48-53.

Kim, H., Feamster, N., 2013. Improving network management with software defined
networking. IEEE Commun. Mag. 51 (2), 114-119.

Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.,
2015. Software-defined networking: a comprehensive survey. Proc. IEEE 103 (1),
14-76.

Le, F., Xie, G.G., Zhang, H., 2010. Theory and new primitives for safely connecting
routing protocol instances. ACM SIGCOMM Comput. Commun. Rev. 40 (4),
219-230.

Levin, D., Canini, M., Schmid, S., Schaffert, F., Feldmann. A., 2014. Panopticon: Reaping
the benefits of incremental SDN deployment in enterprise networks. In: 2014
USENIX Annual Technical Conference (USENIX ATC 14), pp. 333-345.

Lu, H., Arora, N., Zhang, H., Lumezanu, C., Rhee, J., Jiang, G., 2013. Hybnet:
Network manager for a hybrid network infrastructure. In: Proceedings of the
Industrial Track of the 13th ACM/IFIP/USENIX International Middleware
Conference, ACM, p. 6.

Manzalini, A., Saracco, R., 2013. Software networks at the edge: A shift of paradigm, in:
Future Networks and Services (SDN4FNS), 2013 IEEE SDN for, pp. 1-6. (http://dx.
doi.org/10.1109/SDN4FNS.2013.6702555).

Gredler, H., Medved, J., Previdi, S,. Farrel, A., Ray, S., 2015. North-Bound distribution of
link-state and traffic engineering (TE) information using BGP. URL (https://tools.
ietf.org/html/draft-ietf-idr-ls-distribution-10).

Mishra, A.K., Sahoo, A., 2007. S-OSPF: A traffic engineering solution for OSPF based
best effort networks. In: IEEE GLOBECOM 2007-IEEE Global Telecommunications
Conference, IEEE, pp. 1845-1849.

Mishra, A., Bansod, D., Haribabu, K., 2016. A framework for openflow-like policy-based
routing in hybrid software defined networks. In: INC, pp. 97-102.

Nakahodo, Y., Naito, T., Oki, E., 2014. Implementation of smart-OSPF in hybrid
software-defined network. In: 2014 4th IEEE International Conference on Network
Infrastructure and Digital Content, IEEE, pp. 374-378.

Nunes, B.A.A., Mendonca, M., Nguyen, X.-N., Obraczka, K., Turletti, T., 2014. A survey of
software-defined networking: past, present, and future of programmable networks.
IEEE Commun. Surv. Tutor. 16 (3), 1617-1634.

Ochoa Aday, L., Cervell6 Pastor, C., Fernandez Fernandez, A. Current trends of topology
discovery in OpenFlow-based software defined networks.

OpenFlowDiscoveryProtocolGENI: geni. (http://groups.geni.net/geni/wiki/
OpenFlowDiscoveryProtocol).

Pakzad, F., Portmann, M., Tan, W.L., Indulska, J., 2014. Efficient topology discovery in
software defined networks. In: Signal Processing and Communication Systems
(ICSPCS), 2014 8th International Conference on, IEEE, pp. 1-8.

Pakzad, F., Portmann, M., Tan, W.L., Indulska, J., 2016. Efficient topology discovery in
OpenFlow-based software defined networks. Comput. Commun. 77, 52-61.

Parniewicz, D., Doriguzzi Corin, R., Ogrodowczyk, L., Rashidi Fard, M., Matias, J.,
Gerola, M., Fuentes, V., Toseef, U., Zaalouk, A., Belter et al., B., 2014. Design and
implementation of an OpenFlow hardware abstraction layer. In: Proceedings of
the 2014 ACM SIGCOMM workshop on Distributed cloud computing, ACM, pp.

http://docplayer.net/32607513-Telecom-white-paper-a-hybrid-approach-to-networking-integrating-openflow-and-legacy-switches-using-opendaylight.html
http://docplayer.net/32607513-Telecom-white-paper-a-hybrid-approach-to-networking-integrating-openflow-and-legacy-switches-using-opendaylight.html
http://docplayer.net/32607513-Telecom-white-paper-a-hybrid-approach-to-networking-integrating-openflow-and-legacy-switches-using-opendaylight.html
https://www.ietf.org/archive/id/draft-ward-i2rs-framework-00.txt
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref1
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref1
https://tools.ietf.org/html/draft-sb-nvo3-sdn-federation-01
http://dl.acm.org/citation.cfm?Id=1558977.1559000
https://tools.ietf.org/html/rfc7149
http://dx.doi.org/10.1145/2627566.2627574
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref2
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref2
https://tools.ietf.org/html/draft-hartman-sdnsec-requirements-00
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref3
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref3
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref4
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref4
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref4
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref5
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref5
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref6
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref6
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref7
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref7
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref8
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref8
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref8
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref9
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref9
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref9
http://dx.doi.org/10.1109/SDN4FNS.2013.6702555
http://dx.doi.org/10.1109/SDN4FNS.2013.6702555
https://tools.ietf.org/html/draft-ietf-idr-ls-distribution-10
https://tools.ietf.org/html/draft-ietf-idr-ls-distribution-10
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref10
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref10
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref10
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref11
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref11

Sandhya et al.

71-76.

Pathak, A., Zhang, M., Hu, Y.C., Mahajan, R., Maltz, D., 2011. Latency inflation with
mpls-based traffic engineering. In: Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, ACM, pp. 463—472.

Qazi, Z.A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., Yu, M., 2013. Simple-fying
middlebox policy enforcement using sdn. ACM SIGCOMM Comput. Commun. Rev.
43 (4), 27-38.

Rostami, A., Jungel, T., Koepsel, A., Woesner, H., Wolisz, A., 2012. Oran: Openflow
routers for academic networks. In: IEEE 13th International Conference on High
Performance Switchingand Routing, {HPSR} 2012, IEEE, pp. 216-222.

Saha, A.K., Sambyo, K., Bhunia, C., 2016. Topology discovery, loop finding and
alternative path solution in POX controller. In: Proceedings of the International
MultiConference of Engineers and Computer Scientists, vol. 2, 2016 pp. 553—-557.

Sezer, S., Scott-Hayward, S., Chouhan, P.K., Fraser, B., Lake, D., Finnegan, J., Viljoen,
N., Miller, M., Rao, N., 2013. Are we ready for SDN? Implementation challenges for
software-defined networks. IEEE Commun. Mag. 51 (7), 36—43.

Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., 2011. Enabling fast
failure recovery in OpenFlow networks. In: Design of Reliable Communication
Networks (DRCN), 2011 8th International Workshop on the, IEEE, pp. 164-171.

Sharma, S., Staessens, D., Colle, D., Pickavet, M., Demeester, P., 2013. Fast failure
recovery for in-band openflow networks. In: 9th international conference on the
design of reliable communication networks (dren), 2013, IEEE, pp. 52-59.

Pfaff, Ben, Lantz, B, Heller, Bea, et al., 2012. Openflow switch specification, version 1.3.0.
Open Netw. Found..

Tilmans, O., Vissicchio, S., 2014. IGP-as-a-Backup for robust SDN networks. In: 10th
International Conference on Network and Service Management (CNSM), IEEE, pp.
127-135.

Tilmans, O., Vissicchio, S., Vanbever, L., Rexford, J., 2016. Fibbing in action: On-
demand load-balancing for better video delivery. In: Proceedings of the ACM
SIGCOMM 2016 Conference, ACM, pp. 619-620.

Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., Sherwood, R., 2012. On
controller performance in software-defined networks. In: Presented as part of the
2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services.

Vanbever, L., Vissicchio, S., 2014. Enabling SDN in old school networks with software-
controlled routing protocols. In: Presented as part of the Open Networking Summit
2014 (ONS 2014).

Vissicchio, S., Vanbever, L., Cittadin, L., Xie, G., Bonaventure, O., et al., 2013. Safe
updates of hybrid SDN networks. Univ. catholique de Louvain, Tech. Rep..

Vissicchio, S., Vanbever, L., Bonaventure, O., 2014a. Opportunities and research
challenges of hybrid software defined networks. ACM SIGCOMM Comput. Commun.
Rev. 44 (2), 70-75.

Vissicchio, S., Vanbever, L., Cittadini, L., Xie, G.G., Bonaventure, O., 2014b. Safe routing
reconfigurations with route redistribution. In: Proceedings of the IEEE INFOCOM,
2014, IEEE, pp. 199-207.

Vissicchio, S., Vanbever, L., Rexford, J., 2014c. Sweet little lies: Fake topologies for
flexible routing. In: Proceedings of the 13th ACM Workshop on Hot Topics in
Networks, ACM, p. 3.

Vissicchio, S., Tilmans, O., Vanbever, L., Rexford, J., 2015. Central control over
distributed routing. ACM SIGCOMM Comput. Commun. Rev. 45 (4), 43-56.

Wang, Y., Schapira, M., Rexford, J., 2009. Neighbor-specific bgp: more flexible routing

55

Journal of Network and Computer Applications 100 (2017) 35-55

policies while improving global stability. In: Proceedings of the Eleventh
International Joint Conference on Measurementand Modeling of Computer Systems,
SIGMETRICS/Performance 2009, Vol. 37, ACM, pp. 217-228.

Xia, W., Wen, Y., Foh, C.H., Niyato, D., Xie, H., 2015. A survey on software-defined
networking. IEEE Commun. Surv. Tutor. 17 (1), 27-51.

Yeganeh, S.H., Tootoonchian, A., Ganjali, Y., 2013. On scalability of software-defined
networking. IEEE Commun. Mag. 51 (2), 136-141.

Sandhya is pursuing Ph.D. as a full time scholar under the
supervision of Dr. K. Haribabu, Assistant Professor,
Department of Computer Science & Information Systems,
Birla Institute of Technology and Science, Pilani, India. Her
research interests are Computer Networks and Software
Defined Networks.

Yash Sinha received his M.Sc.(Tech.) in Information
Systems from Birla Institute of Technology & Science,
Pilani, India in 2016. Currently, he is pursuing Masters
of Engineering in Computer Science at Birla Institute of
Technology & Science, Pilani, India. His research interests
are Software Defined Networks, hybrid SDN, peer-to-peer
networks and machine learning.

K Haribabu is currently working as Assistant Professor in
the Department of Computer Science & Information
Systems, at Birla Institute of Technology & Science, Pilani,
India. He has completed his Ph.D. in 2012 from BITS
Pilani. His areas of interests are P2P systems, Software
Defined Networking and cyber-physical systems. He is a
member of IEEE and ACM.

http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref12
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref12
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref12
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref13
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref13
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref13
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref14
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref14
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref15
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref15
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref16
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref16
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref16
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref17
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref17
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref18
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref18
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref19
http://refhub.elsevier.com/S1084-8045(17)30317-X/sbref19

	A survey: Hybrid SDN
	Introduction
	The hybrid SDN paradigm
	What is hybrid SDN?
	Benefits it promises
	Limitations
	Probable contextomy
	Dual stack mode (hybrid switch)
	OpenFlow hybrid mode

	Hybrid SDN models
	Classification based on architecture and components
	Co-existence in the control plane only
	Co-existence in control & data planes

	Classification based on functionality
	Service based
	Traffic-class based

	Comparative architectural analysis
	Classification based on architecture and components
	Controller only
	SDN and non-SDN islands
	Edge placements
	With middleware
	With upgrade/agent
	SDN overlay

	Classification based on functionality
	Service based
	Traffic-class based

	Implementation approaches of hybrid SDN
	Controller only
	Session establishment
	Injection of fake packets
	Translation of high-level goals into configurations

	SDN and Non-SDN islands
	SDN overlay
	Network virtualization
	SDN partitioning

	Edge placements
	IP address mapping
	Using virtual machines

	With middleware
	With upgrade/agent
	Configuration of agent in legacy devices
	Software upgradation

	Services based
	Traffic based

	Addressing challenges in hybrid SDN
	Topology discovery
	Layer 2 protocols
	Layer 3 protocols
	Application layer protocols

	Configuration
	The placement problem
	Conflicts in hybrid control planes
	Controller-switch communication
	Scalability
	Traffic engineering
	Load balancing
	Fault tolerance

	Related work
	Conclusion
	References

