Introduction

With the decoupling of network control and data planes,
the upcoming Software Defined Networking (SDN)
paradigm advocates better network control and
manageability. It introduces logical centralized control,
network programmability and abstraction of underlying
infrastructure from network services and applications. With
global visibility of network state and central control that
eases real time monitoring, policy alterations etc., it
certainly enhances network security inherently. However,
the separation of planes opens up new challenges like
denial of service (DoS) attack, saturation attack, man-in-the
middle attack and so on.

Many of the issues of controller availability, controller-
switch communication delay and scalability can be solved
separately by distributed controllers, out-of-band
communication links and parallelization respectively.
Control-data plane intelligence trade-off has the potential
to solve all of these. It increases controller availability,
reduces latency for traffic engineering & decision making,
and improves controller scalability. Moreover, control-data
plane intelligence trade-off enables the control-data plane
communication to be more secure. This will tremendously
offload the processing load on the controller. We present
how to realize control-data plane intelligence tradeoff
extending OpenFlow.

Issues at CDPI

Controller-switch semantic gap

Stateful applications such as firewalls heavily depend on
the communication between the switch and the controller
and the controllers among themselves.

If network state changes, latency in distribution of this
information can lead to incorrect behavior.

The distribution of access control supporting aggregated
flows, multi-tenant controllers, and multiple controllers in a
single domain can create configuration conflicts.

Control-data plane intelligence trade-off

There are recommendations by the researchers to delegate
the decision making of the controller partially to the
switches to overcome the issues due to latency in switch-
controller communication, partial controller
unresponsiveness due to load etc. This adds further
complexity to maintain control plane states, discover and
avoid security loopholes and mitigate delayed response.
Nevertheless, it can help mitigate issues of latency,
availability, fast reactivity and security.

Extending Open Flow

We propose to relax separation of control operations at the
controller and include following operations in the
forwarding elements

Network Monitoring

Monitoring networks and collecting statistics is just a
repetitive task and this cannot be classified strictly as a
control plane task. If the switch can get to know from the
controller certain parameters regarding what to monitor
and what to store, it can very well perform this task. This
will offload significant load on the controller as well as
reduce latency for controller-switch communications.

1. Message Generation

Similar to PortsStats and FlowStats requests sent by the
controller to request statistics from the switches, a
particular switch, say root of the spanning tree, can send

Control-data plane intelligence trade-off in SDN

similar packets to the switches connected in the tree and
accumulate statistics.

This can be realized by a general message generator and
processing function on OpenFlow switches.

2. Message Response

Message response is already supported by the switches in
response to controller’s request for statistics. This
functionality can be extended to react to statistics’ request
from other switches.

Link Encryption

To prevent man in the middle attack, it is crucial to have
secure connections between the switches. To expedite
decision making for routing flows and thus improve upon
controller-switch communication latency, switches need to
share stateful information. We have described in
subsections C and D below. This requires links to be
encrypted. Similar to network monitoring, link encryption
is used here just as a mechanism and not as a network
controlling/managing entity.

Flow rules installation based
on local heuristics

In switches that support dual stack, traditional protocols
like Open Shortest Path First (OSPF) have been used along
with the SDN controller to improve traffic engineering in
hybrid SDN models. Therefore, we recommend having a
similar low level heuristic to route flows at the switch, in
case communication with the controller is delayed.

This can utilize the local, real-time data collected by the
network monitoring module about the local vicinity similar
to OSPF Hello messages.

Yash Sinha
Siddharth Bhatia

Birla Institute of Technology and Science, Pilani, India

Thus, it is more efficient in terms of spatial and temporal
locality for collecting network monitoring data.

By only sending aggregated statistics to the controller, there
will be lot of reduction in controller load. This will increase
available bandwidth in the controller-switch communication
channel thus enabling better scalability.

Network State Sharing

State sharing using east-west bound APIs at the controller
yet again cannot be classified strictly as a control plane
task, if it is implemented as a pull based API rather than
push based. If the switches are able to serve low level
network state available with them, then a controller in a
distributed controller environment can request the stateful
information as and when it requires.

The state information not only includes network statistics
and locally traffic engineered paths as outlined before; it
also includes firewall information, current elephant and ant
flows, processor loads of the various controllers that it was
connected to in the recent past etc. The concerned
controller can get this data from various sources and filter
it based on timestamps

Conclusion

While assigning control functions at the switches partially
instead of a central remote network controller, we enhance
security and scalability extending OpenFlow. Particularly in
the direction of network monitoring, link encryption, local
decision making and sharing network states the
functionality can be shared by the data plane.




