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Abstract— Most of the content sharing applications use the 
client/server model in which all of group managements are done 
by the server and this sometimes becomes a communication 
bottleneck. Installing specialized software for different purposes 
such as file sharing, video conferencing etc., becomes a barrier for 
the user. Recent technologies like NodeJs and Socket.io have 
fostered new ideas the ways web browsers can be used. Moreover, 
the emerging standards of WebRTC open up new paradigm of 
direct communication channel between web browsers without 
relaying the data through a web server. But there are certain issues 
such as lack of full-fledged threading/concurrency support in the 
JavaScript language, reliance on synchronous loading etc. that 
restricts modern day browsers to take full advantage of current 
multiprocessing capabilities. Although, on one hand there are 
advantages of using web browsers, such as no requirement of 
specialized software, benefits of emerging technologies etc.; the 
aforementioned issues pose challenges in implementation in 
certain areas. 

In this paper, we have tried to couple the benefits of peer-to-
peer (P2P) architecture (elimination of centralized dependency, 
better scalability, shareability etc.) along with the advantages of 
recent web technologies (NodeJs, WebRTC etc.) by designing and 
implementing a browser based P2P content sharing framework. 
We have addressed the aforementioned challenges of a browser 
based P2P architecture by providing a mechanism to exchange 
messages asynchronously and facilitating new peer joins via 
existing peers in the network, thus reducing the dependency on 
bootstrap server. Our prototypical implementation demonstrates 
the feasibility, efficiency and scalability of this lightweight 
framework, on the top of which a variety of applications can be 
added as a layer of functionality. 
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I.  INTRODUCTION 

With rapidly growing need and dependence of society on 
data sharing and communication, the number of users in 
networks are growing exponentially. The client-server 
architecture doesn’t seem to be a feasible solution as much as 
peer-to-peer (P2P) architecture because often too many requests 
to the server leads to congestion and if it fails, whole network 
goes down. Further cost and maintenance issues are also there. 

On the other hand, P2P architecture is more reliable as it 
allows direct communication between users thus eliminates the 
need of any centralized instance. Moreover, P2P is scalable 
because with increasing number of participants the storage 
capacity, computation power and bandwidth of the network also 
increases as the resources are shared among users. 

Upcoming web technologies like NodeJs and Socket.io have 
fostered new innovations in usability of web browsers. The new 
paradigm of WebRTC has enabled a direct communication 
channel between web browsers without relaying data through a 
server. WebRTC is supported by most of the popular browsers. 
It gives increased security, and higher cross platform 
compatibility of application on multiple devices. WebRTC has 
been anticipated to be supported by 4.7 billion devices by 2018 
[1]. It allows to build varieties of real time application for web 
browsers without relying on third party plugins which introduce 
security, compatibility and performance issues. Therefore, 
instead of bugging the user to download a new specialised 
software/plugins for each of his different needs, we have 
attempted to assimilate the benefits of P2P architecture 
implemented using recent web technologies on top of web 
browsers; thus helping him use an already installed software for 
more diverse purposes. Much work has been done that 
emphasises that a variety of activities and purposes which had 
previously required specialized software such as file sharing 
between peers without a server to relay the files, video and audio 
chat without the use of proprietary 3rd-party plugins, and 
multimedia conferencing without the need for proprietary, 
platform-dependent 3rd-party applications; can be now built 
with ease using WebRTC.  

In this paper we have leveraged the Data channel component 
of WebRTC to design and implement a web browser compatible 
framework which will simplify the development of various 
applications in sharing content among users without knowing 
about the underlying architecture. The framework forms a 
structured p2p network which allows any user to search for any 
resource efficiently. Our framework is a modified version of 
Chord [2], a distributed lookup protocol for p2p network. We 
chose Chord because of its simplicity, provable correctness and 
proven performance. It has proved to be working in large scale 
implementations [3].  Chord operations runs in predictable time 
and always result in success or definitive failure. Moreover, it 
balances the load over entire network making it more 
decentralized and scalable. Chord in its original form is 
incompatible with browser environment which lacks in 
threading/concurrency support. Chord operation relies on 
synchronous loading which hinders browser interactivity 
because of availability of a single main thread. Therefore, we 
have redesigned Chord operation for making them compatible 
with the browser based environment. We have divided Chord 
operations into several procedures and associated a call back 
function with each of the procedure and also tweaked the 
bootstrap server for decreased dependency. We have delineated 
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the challenges faced during the process of implementation and 
proposed solutions for it. 

II. BACKGROUND AND RELATED WORK 

Chord is a distributed lookup protocol for structured P2P 
networks. It is one of the most prominent, simple and effective 
DHT technique; however, it is dependent on synchronous calls 
for its successful execution therefore cannot be used in 
asynchronous environment [2]. Vogt et al. [4] proposes a model 
for building DHT based Content Distribution Network (CDN) 
using WebRTC Data Channels. It gives an abstract picture of 
how peers can join a network and can exchange messages 
among each other without any support from a centralized 
server. Zhang et al. [5] has also investigated the possibility of 
building a CDN service for web browsers based on centralized 
P2P network using flash plugin provided by Adobe. Their 
framework is centred around a coordinator node that holds 
mappings between peers and the data stored on these peer. 

WebRTC-Chord is an asynchronous implementation of 
Chord protocol on Node Package Manager [6]. Although made 
for web browser, WebRTC-Chord is not as efficient because it 
doesn’t keep bootstrapping server lightweight. The server 
stores all information about the peers and helps them to update 
their entries as the network changes dynamically over time 
which is not scalable. Werner et al. [7] presents a design and 
implementation of a browser-based secure social network 
application on top of a WebRTC-based p2p framework, which 
uses modified version of OpenChord to provide all building 
blocks to create a social network. ShareFest [8] is a web 
BitTorrent application which has been realized to enable users 
for peer-to-peer file sharing using WebRTC. It allows other 
users to download files via a URL directly from the owner’s 
machine. 

CHEWBACCA (CHord, Enhanced With Basic Algorithm 
Corrections and Concurrent Activation) [9] is a P2P network 
framework in Java using sockets based messaging which uses 
synchronous calls thus, is not suitable for event driven, non-
blocking systems like web-browsers. Ref. [10] lays out core 
architecture for building browser based framework for P2P 
networks. Although being functional, it is not scalable as it 
maintains full mesh connection between all participating peers. 

III. CHALLENGES IN IMPLEMENTATION 

Here we discuss the challenges faced in course of 
implementation of the framework: 

A. Lack of full-fledged threading/concurrency support in the 
Javascript language 

JavaScript historically suffers from an important limitation: 
all its execution process remains inside a unique thread [11]. 
This JavaScript limitation implies that a long-running process 
freezes the main window.  The user is unable to interact with 
the application and user experience becomes unpleasant. The 
user may decide to kill the tab or the browser instance. 
The join operation to the network requires peers to be 
discovered and peer to peer connections to be established which 
involves a number of procedures like contacting the bootstrap 
server, handshakes between connecting peers and several 

message forwarding operations depending on the network size. 
Moreover, sequential execution of the procedure is required 
because next procedure requires successful completion of the 
preceding procedure. 

If this operation is implemented in traditional synchronous 
way, it is required that the thread sleeps (or waits) till the 
previous procedure executes successfully. There is no provision 
for sleep in JavaScript [12], and busy waiting, in the worst case, 
will freeze the main window. 

Further, because the web workers operate independently of 
the main thread [11], they cannot access many of its objects. 
They cannot access the DOM, so they cannot read or modify 
the HTML document. In addition, they cannot access any global 
variables or some special objects like the window, parent and 
the document. Because the communication with web worker is 
based on messaging, sequential execution cannot be 
guaranteed. 

B. Dependency on bootstrap server 

In order for a WebRTC application to set up a P2P 
connection, its clients need to exchange information such as 
session control messages, error messages, media metadata, key 
data (for secure connections), and network data [13]. This 
signalling process needs a way for clients to pass messages back 
and forth. To avoid redundancy and to maximize compatibility 
with established technologies, signalling methods and protocols 
are not specified by WebRTC standards (as outlined by JSEP) 
[14]. The main challenge here is signalling servers may have to 
handle a lot of messages, from different locations, with high 
levels of concurrency. This signalling server is generally also 
called the bootstrap server. 

In current implementations [6], bootstrap server is also 
actively involved in connection of new peers to the existing 
network, facilitation of handshakes and network stabilization. 
This defeats the purpose of using a P2P architecture as the 
bootstrap server becomes a communication bottleneck as well 
as a single point of failure.  

C. Using ICE to cope with NATs and firewalls: STUN and 
TURN servers 

In real life scenarios most devices function behind one or 
more layers of NAT. Some may have anti-virus software that 
blocks certain ports and protocols, and others may be behind 
proxies and corporate firewalls. A firewall and NAT can be 
implemented by the same device, such as a home Wi-Fi router. 
So ICE framework is required to overcome the complexities of 
real-world networking. 

ICE first tries to make a connection using the host address 
obtained from a device's operating system and network card; if 
that fails (which it will for devices behind NATs) ICE obtains 
an external address using a STUN server, and if that fails, traffic 
is routed via a TURN relay server [13]. A STUN server is used 
to get an external network address whereas TURN servers are 
used to relay traffic if direct (peer to peer) connection fails. ICE 
servers may have to handle a lot of messages, so high levels of 
concurrency is required. 
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IV. DESIGN AND IMPLEMENTATION OF PROTOTYPE 

A. Components 

1) Peer 
A peer has two primary modules which are explained below: 

a)  Channel Manager 
It is that module which is responsible for handling all 

WebRTC stack. It creates offers, accepts offers, periodically 
runs the stabilize operation and keeps track of open connections 
for a peer. Since all connection establishment in WebRTC is 
asynchronous, the Channel Manager also stores the state of 
every connection and acts appropriately on every possible state 
change. It is also responsible for receiving messages from other 
peers and processing them according to their type. 

b)  Node Details 
It is the store house for a peer. All information such as 

successor, predecessor etc. is stored here. Different strategies 
used for connections in different scenarios access data from this 
module and hence referential integrity is maintained. It also 
contains the details about fingers in finger table, sent and 
received messages in response table and forward table and 
incomplete connections in channel table. 

2) Bootstrap Server 
It allows new peer to join network by assigning it a unique 

identifier and establishing its connection with one of the peers 
which is already in the network. For a new peer, that peer 
becomes its boot peer whom it contacts for joining the network 
and establishing connection with other peers. Bootstrap server 
has no other role than to help peer in making connection with 
its boot peer, this helps to keep server lightweight and makes 
the framework more scalable 

3) Message Format 
Messages exchanged between peers are encoded in JSON 

format. It consists of source and destination peer identifiers 
which are assigned by the bootstrap server. It contains a type 
identifier which helps to differentiate the messages. Depending 
on the type of message, it contains other data like signal 
information, result of query, callback function etc. 

B. Modifications to Chord 

We made the following modifications to the base Chord 
protocol:  

1) Join Boot Peer via Bootstrap server 
As shown in the Figure 1, a new peer, aspiring to connect to 

the network, contacts the bootstrap server, via a connection 
through web socket. With the function call b-register, the new 
peer requests a peer id and configuration information from the 
bootstrap server, and the server knowing in advance the ids of 
peers already connected to the network, sends a unique id via 
the p-register call. Also the information about STUN/TURN 
servers, size of finger table etc. are sent. 

The bootstrap server then facilitates the connection 
formation with one of the peers (called the Boot peer) in the 
network. 

2) Join network. 
As shown in the Figure 2, the join network operation has 

been divided into four procedures which are asynchronous in 
nature. In procedure 1, the new peer attempts to form a 
connection with its successor facilitated by its boot peer. So, it 
makes a findSuccessor call to its boot peer and also sends its 
connection offer with it. The boot peer queries the network to 
find its successor, and then forwards the offer to the successor. 
The successor replies with its accepted offer to the boot peer 
which is forwarded to the new peer. In procedure 2, the new 
peer attempts to form a connection with its predecessor in a 
similar way. In procedures 3 and 4 it notifies its successor and 
predecessor to update their predecessor and successor 
respectively. 

To decrease the joining time of the new peer to the network, 
the bootstrap server picks up the (to be) successor itself as the 
boot peer. Thus connection to successor is made by the 
bootstrap server itself. Therefore, the set of handshakes 
required to establish connection with the successor is not 
needed which is in contrast to the erstwhile approach; where a 
peer was randomly picked up from the network as the boot peer, 
which then facilitated the handshakes for connection with the 
successor. The experimental proof has been discussed in 

Figure 1. Join Boot Peer via Bootstrap Server 
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Section VI.B.5. It reduces load on the other peers in the network 
and also the requests to STUN/TURN server for ice candidates. 

3) Asynchronous stabilization procedure 
Similar to join operation we have modified the stabilize 

operation to make it asynchronous by dividing it into two 
procedures. In the procedure 1, the calling node queries for its 
successor’s predecessor and attaches a callback to begin second 
procedure when it is completion. The second procedure notifies 
new successor about its new predecessor which is the calling 
node itself. 

4) Find Successor Query Strategies 
The time taken for a message to propagate in the network 

and the time required to generate a new connection offer have 
different impact on findSuccessor query made to the network. 
The propagation delay is primarily a function of network size 
as every message needs to be passed through peers in the 
network whereas the load on STUN server determines the time 
taken to generate a new offer. Therefore, we have designed two 
strategies for implementing findSuccessor operation which 
optimize the query response time based on network size and 
responsiveness of STUN server. Both strategies have their own 
pros and cons. 

The first strategy involves generating connection offer and 
attaching it with the findSuccessor query. This allows to 
directly offer connection offer to the peer which is the successor 
of the queried peer id. On the other hand, the second strategy 
involves sending the query in the network without offer and on 
receiving the result the peer dynamically decides whether it 
needs to form connection. If connection does not exists already, 
another query is sent with the offer. 

Strategy 1 is useful in cases when network is too large the 
query forward time becomes more than signal generation time 
and thus querying the network twice becomes expensive. It’s 

also efficient in scenarios where many new connections are to 
be made for example the first call to fixFinger operation. 

Although the former strategy requires query to be sent only 
once in the network; at times when the calling peer already has 
a connection with the successor of the queried peer id, its offer 
doesn’t hold any significance thus its generation becomes just 
an overhead for stun server and the query. In this case, the 
second strategy performs better as it doesn’t attach any offer 
with the query. Moreover, strategy 2 is especially beneficial for 
periodic fix finger operation because it involves multiple 
findSuccesor queries many of which are meant to validate the 
existing entries in finger table and ensure the connections are 
up; as discussed in Section VI.B.3. Only a few new connections 
are required to be made. We have discussed the experimental 
results in Section VI.B.4. 

V. PROPOSED SOLUTIONS TO THE CHALLENGES 

A. Division of join network operation into asynchronous 
procedures 

We divided the join network operation into separate  
procedures that can be called asynchronously. Sequential 
execution is guaranteed with the help of the response table, 
which stores the results of preceding procedures based on 
message ids and function parameter of the procedures that 
indicates which procedure is to be called next once this 
procedure executes successfully. 

B. Reducing dependency on bootstrap server 

We make the bootstrap server weakly involved by 
facilitating handshakes between new peer and the network via 
the boot peer and other peers in the network. The bootstrap 
server is only involved in assigning a new, unique id to a new 
peer and connecting it with a peer from the network. If this peer 
is chosen randomly, it balances the load on peers to facilitate 

Figure 2. Join Network Operation 
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handshakes but this requires more messages to be exchanged 
between peers. Therefore, we have chosen the (to be) successor 
itself as the boot peer. 

C. Addressing load on STUN and TURN servers 

We use multiple STUN servers to balance load of ICE 
candidate requests on them. We use TURN server to route 
traffic via relay server. Further, periodically we run a check for 
existing connections which are not required, and destroy them. 

VI. EVALUATION ON LAN 

In this section, we have tested the framework for 
functionality, scalability tried to prove the experimental 
correctness of the claims that we have made above. 

A. Experimental Setup 

To evaluate our framework, we use a total of 60 hosts. On 
one of the hosts we run both the bootstrap server and a peer. 
The other hosts act as peers and connect to the network with the 
help of bootstrap server. The hosts are interconnected using 
Gigabit Ethernet (GigE) using multiport 100Mbps Layer 2 
switches. We use local STUN servers [15]. For 4) and 5), we 
assume the STUN server response time to be at least 1000 
milliseconds and propagation delay between each pair of peer 
to be 50 milliseconds, to resemble the emulation to real life 
scenario. 

B. Results 

1) Time to join network 
Currently, the existing WebRTC implementations are 

neither feature complete nor do the performance characteristics 
match the finalized product [16]. Due to the low-delay LAN 
environment, the measured delays almost solely mirror the 
actual delay introduced by this framework and the WebRTC 
stack. As shown in Figure 3, even for large networks which 
have as many as 60 peers, the time taken to join the network is 
less than 1000 milliseconds in our prototypical implementation. 
This includes propagation delays of messages transmitted, time 
taken to generate connection offer, requests sent to resolve 
bootstrap server and STUN server and time taken by STUN 
server to resolve peer. This shows that the framework is quite 
scalable. 

 
Figure 3. Time to Join Network 

2) Performance of join network operation 
To offer best user experience, the framework must quickly 

connect to the network and perform its crucial operations, so 
that applications can run on the top of it without much delay.  

Figure 4 shows the number of messages exchanged between 
peers in join network operation as function of network size in 
two different scenarios: with and without fingers. Clearly, with 
finger table entries, number of messages exchanged reduces 
logarithmically in contrast to linear fashion in case of without 
finger table. 

 
Figure 4. Performance of join network operation 

3) Number of message exchanges in fix fingers 
Although the network functions better with finger table 

entries, there is an overhead involved to maintain it. 
Periodically, every peer calls the fixFinger operation to become 
aware of recent new peer joins and leaves and thus, update 
connections. Figure 5 shows that as the network grows, more 
messages are required to be exchanged to fix fingers. 

 
Figure 5. Comparing strategies for periodic fix fingers operation 

Periodic calls to fixFinger operation performs better with 
strategy 2 as fewer connections are required to be established. 
Strategy 1 perform poorly because it generates a connection 
offer with every query most of which get discarded later on. 
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4) Comparing findSuccessor strategies: tradeoff between 
signal generation time and query propagation time 

Figure 6 and 7 prove our claims of pros and cons of the two 
strategies used to implement findSuccessor operation in 
different scenarios. When network is small, performance of 
both strategy 1 and strategy 2 are almost same because message 
forwarding time is negligible in comparison to signal 
generation time. The number of messages to be exchanged is 
also comparable. 

As the network grows in size, the message forwarding time 
becomes much more considerable than signal generation time. 
Therefore, strategy 2 that sends queries twice in the network 
performs poorly. 

 
Figure 6. Comparing find successor strategies (Join Time) 

The sudden improvements in strategy 2 performance can 
attributed to the scenarios where the peer already has 
connection with the result of findSuccesor query and thus, the 
second connection query need not be sent. 

 
Figure 7. Comparing find successor strategies (Messages exchanged) 

Another reason why strategy 1 performs better is because when 
a new peer joining the network is less likely to have a 
connection with other peers. Consequently, it is less likely that 
the connection offer will be discarded. Therefore, it is more 

efficient to include connection offer in the query itself (strategy 
1) rather than sending another query for forming the connection 
after the first query (strategy 2). 

5) Recommending successor as Boot Peer vs random 
selection 

Figure 8 shows how join time of new peers is reduced, thus 
performance of network is improved, if the bootstrap server 
recommends the (to be) successor of the new peer as its boot 
peer. This behaviour has been explained in Section IV.B.2. To 
resemble the emulation to real life scenario, aforementioned 
assumptions hold true here also.   

 
Figure 8. Strategies of recommending Boot peer 

VII. EVALUATION ON INTERNET 

A. Experimental Setup 

We evaluate our framework on global scale using Amazon 
Web Services and Google STUN [17] servers. We deploy a 
total of thirty peers on eight Amazon EC2 [18] micro instances 
at different location across the globe (Figure. 9). On one of the 
instances at Singapore, we run the bootstrap server and the other 
instances at different locations act as peers and connect to the 
network randomly with the help of bootstrap server. On each 
instance multiple we run multiple peers. To check the 
correctness of framework we also destroyed few peers 
randomly in between the experiment. 

 

  
Figure 9. Peer Locations across the globe 
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B. Results 

1) Comparing find successor strategies on Internet 
As shown in Figure 10, the trends between strategies is 

similar to LAN but the difference is inflated from 1000 
milliseconds to 4000 milliseconds approximately. 

 
2) Join Network Time in LAN and Internet 

 
The difference in join network time on LAN and Internet 

owes to multiple reasons: time required to contact STUN 
servers, packet propagation time, signal generation time, other 
traffic in network etc. 

VIII. FUTURE SCOPE 

Because JavaScript engines have only a single thread, 
asynchronous events are forced to be queued for execution. 
Queueing in JavaScript varies from browser to browser. Since 
the network is dynamic, messages may be delivered out of order 
to a peer and this can lead to errors. 

Security issues and privacy concerns of users have not been 
investigated.  

IX. CONCLUSION 

We have tried to leverage the benefits of recent technologies 
like NodeJs and WebRTC of modern browsers in P2P based 
content sharing framework. We implemented the Chord 
protocol for our test environment but other protocols like Pastry 
or CAN are certainly possible, too. We are waiting for the 
WebRTC technology to become stable and mature for further 
explorations in other protocols. 
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