
Addressing Challenges in Browser Based P2P
Content Sharing Framework Using WebRTC

Shikhar Vashishth1 Yash Sinha2, K Hari Babu3
Department of Computer Science and Information Systems

Birla Institute of Technology and Science
Pilani, India.

{f20124361, f20123652, khari3}@pilani.bits-pilani.ac.in

Abstract— Most of the content sharing applications use the
client/server model in which all of group managements are done
by the server and this sometimes becomes a communication
bottleneck. Installing specialized software for different purposes
such as file sharing, video conferencing etc., becomes a barrier for
the user. Recent technologies like NodeJs and Socket.io have
fostered new ideas the ways web browsers can be used. Moreover,
the emerging standards of WebRTC open up new paradigm of
direct communication channel between web browsers without
relaying the data through a web server. But there are certain issues
such as lack of full-fledged threading/concurrency support in the
JavaScript language, reliance on synchronous loading etc. that
restricts modern day browsers to take full advantage of current
multiprocessing capabilities. Although, on one hand there are
advantages of using web browsers, such as no requirement of
specialized software, benefits of emerging technologies etc.; the
aforementioned issues pose challenges in implementation in
certain areas.

In this paper, we have tried to couple the benefits of peer-to-
peer (P2P) architecture (elimination of centralized dependency,
better scalability, shareability etc.) along with the advantages of
recent web technologies (NodeJs, WebRTC etc.) by designing and
implementing a browser based P2P content sharing framework.
We have addressed the aforementioned challenges of a browser
based P2P architecture by providing a mechanism to exchange
messages asynchronously and facilitating new peer joins via
existing peers in the network, thus reducing the dependency on
bootstrap server. Our prototypical implementation demonstrates
the feasibility, efficiency and scalability of this lightweight
framework, on the top of which a variety of applications can be
added as a layer of functionality.

Keywords— peer-to-peer, signalling, WebRTC, DHT, NodeJs

I. INTRODUCTION

With rapidly growing need and dependence of society on
data sharing and communication, the number of users in
networks are growing exponentially. The client-server
architecture doesn’t seem to be a feasible solution as much as
peer-to-peer (P2P) architecture because often too many requests
to the server leads to congestion and if it fails, whole network
goes down. Further cost and maintenance issues are also there.

On the other hand, P2P architecture is more reliable as it
allows direct communication between users thus eliminates the
need of any centralized instance. Moreover, P2P is scalable
because with increasing number of participants the storage
capacity, computation power and bandwidth of the network also
increases as the resources are shared among users.

Upcoming web technologies like NodeJs and Socket.io have
fostered new innovations in usability of web browsers. The new
paradigm of WebRTC has enabled a direct communication
channel between web browsers without relaying data through a
server. WebRTC is supported by most of the popular browsers.
It gives increased security, and higher cross platform
compatibility of application on multiple devices. WebRTC has
been anticipated to be supported by 4.7 billion devices by 2018
[1]. It allows to build varieties of real time application for web
browsers without relying on third party plugins which introduce
security, compatibility and performance issues. Therefore,
instead of bugging the user to download a new specialised
software/plugins for each of his different needs, we have
attempted to assimilate the benefits of P2P architecture
implemented using recent web technologies on top of web
browsers; thus helping him use an already installed software for
more diverse purposes. Much work has been done that
emphasises that a variety of activities and purposes which had
previously required specialized software such as file sharing
between peers without a server to relay the files, video and audio
chat without the use of proprietary 3rd-party plugins, and
multimedia conferencing without the need for proprietary,
platform-dependent 3rd-party applications; can be now built
with ease using WebRTC.

In this paper we have leveraged the Data channel component
of WebRTC to design and implement a web browser compatible
framework which will simplify the development of various
applications in sharing content among users without knowing
about the underlying architecture. The framework forms a
structured p2p network which allows any user to search for any
resource efficiently. Our framework is a modified version of
Chord [2], a distributed lookup protocol for p2p network. We
chose Chord because of its simplicity, provable correctness and
proven performance. It has proved to be working in large scale
implementations [3]. Chord operations runs in predictable time
and always result in success or definitive failure. Moreover, it
balances the load over entire network making it more
decentralized and scalable. Chord in its original form is
incompatible with browser environment which lacks in
threading/concurrency support. Chord operation relies on
synchronous loading which hinders browser interactivity
because of availability of a single main thread. Therefore, we
have redesigned Chord operation for making them compatible
with the browser based environment. We have divided Chord
operations into several procedures and associated a call back
function with each of the procedure and also tweaked the
bootstrap server for decreased dependency. We have delineated

2016 IEEE 30th International Conference on Advanced Information Networking and Applications

1550-445X/16 $31.00 © 2016 IEEE

DOI 10.1109/AINA.2016.143

850

the challenges faced during the process of implementation and
proposed solutions for it.

II. BACKGROUND AND RELATED WORK

Chord is a distributed lookup protocol for structured P2P
networks. It is one of the most prominent, simple and effective
DHT technique; however, it is dependent on synchronous calls
for its successful execution therefore cannot be used in
asynchronous environment [2]. Vogt et al. [4] proposes a model
for building DHT based Content Distribution Network (CDN)
using WebRTC Data Channels. It gives an abstract picture of
how peers can join a network and can exchange messages
among each other without any support from a centralized
server. Zhang et al. [5] has also investigated the possibility of
building a CDN service for web browsers based on centralized
P2P network using flash plugin provided by Adobe. Their
framework is centred around a coordinator node that holds
mappings between peers and the data stored on these peer.

WebRTC-Chord is an asynchronous implementation of
Chord protocol on Node Package Manager [6]. Although made
for web browser, WebRTC-Chord is not as efficient because it
doesn’t keep bootstrapping server lightweight. The server
stores all information about the peers and helps them to update
their entries as the network changes dynamically over time
which is not scalable. Werner et al. [7] presents a design and
implementation of a browser-based secure social network
application on top of a WebRTC-based p2p framework, which
uses modified version of OpenChord to provide all building
blocks to create a social network. ShareFest [8] is a web
BitTorrent application which has been realized to enable users
for peer-to-peer file sharing using WebRTC. It allows other
users to download files via a URL directly from the owner’s
machine.

CHEWBACCA (CHord, Enhanced With Basic Algorithm
Corrections and Concurrent Activation) [9] is a P2P network
framework in Java using sockets based messaging which uses
synchronous calls thus, is not suitable for event driven, non-
blocking systems like web-browsers. Ref. [10] lays out core
architecture for building browser based framework for P2P
networks. Although being functional, it is not scalable as it
maintains full mesh connection between all participating peers.

III. CHALLENGES IN IMPLEMENTATION

Here we discuss the challenges faced in course of
implementation of the framework:

A. Lack of full-fledged threading/concurrency support in the
Javascript language

JavaScript historically suffers from an important limitation:
all its execution process remains inside a unique thread [11].
This JavaScript limitation implies that a long-running process
freezes the main window. The user is unable to interact with
the application and user experience becomes unpleasant. The
user may decide to kill the tab or the browser instance.
The join operation to the network requires peers to be
discovered and peer to peer connections to be established which
involves a number of procedures like contacting the bootstrap
server, handshakes between connecting peers and several

message forwarding operations depending on the network size.
Moreover, sequential execution of the procedure is required
because next procedure requires successful completion of the
preceding procedure.

If this operation is implemented in traditional synchronous
way, it is required that the thread sleeps (or waits) till the
previous procedure executes successfully. There is no provision
for sleep in JavaScript [12], and busy waiting, in the worst case,
will freeze the main window.

Further, because the web workers operate independently of
the main thread [11], they cannot access many of its objects.
They cannot access the DOM, so they cannot read or modify
the HTML document. In addition, they cannot access any global
variables or some special objects like the window, parent and
the document. Because the communication with web worker is
based on messaging, sequential execution cannot be
guaranteed.

B. Dependency on bootstrap server

In order for a WebRTC application to set up a P2P
connection, its clients need to exchange information such as
session control messages, error messages, media metadata, key
data (for secure connections), and network data [13]. This
signalling process needs a way for clients to pass messages back
and forth. To avoid redundancy and to maximize compatibility
with established technologies, signalling methods and protocols
are not specified by WebRTC standards (as outlined by JSEP)
[14]. The main challenge here is signalling servers may have to
handle a lot of messages, from different locations, with high
levels of concurrency. This signalling server is generally also
called the bootstrap server.

In current implementations [6], bootstrap server is also
actively involved in connection of new peers to the existing
network, facilitation of handshakes and network stabilization.
This defeats the purpose of using a P2P architecture as the
bootstrap server becomes a communication bottleneck as well
as a single point of failure.

C. Using ICE to cope with NATs and firewalls: STUN and
TURN servers

In real life scenarios most devices function behind one or
more layers of NAT. Some may have anti-virus software that
blocks certain ports and protocols, and others may be behind
proxies and corporate firewalls. A firewall and NAT can be
implemented by the same device, such as a home Wi-Fi router.
So ICE framework is required to overcome the complexities of
real-world networking.

ICE first tries to make a connection using the host address
obtained from a device's operating system and network card; if
that fails (which it will for devices behind NATs) ICE obtains
an external address using a STUN server, and if that fails, traffic
is routed via a TURN relay server [13]. A STUN server is used
to get an external network address whereas TURN servers are
used to relay traffic if direct (peer to peer) connection fails. ICE
servers may have to handle a lot of messages, so high levels of
concurrency is required.

851

IV. DESIGN AND IMPLEMENTATION OF PROTOTYPE

A. Components

1) Peer
A peer has two primary modules which are explained below:

a) Channel Manager
It is that module which is responsible for handling all

WebRTC stack. It creates offers, accepts offers, periodically
runs the stabilize operation and keeps track of open connections
for a peer. Since all connection establishment in WebRTC is
asynchronous, the Channel Manager also stores the state of
every connection and acts appropriately on every possible state
change. It is also responsible for receiving messages from other
peers and processing them according to their type.

b) Node Details
It is the store house for a peer. All information such as

successor, predecessor etc. is stored here. Different strategies
used for connections in different scenarios access data from this
module and hence referential integrity is maintained. It also
contains the details about fingers in finger table, sent and
received messages in response table and forward table and
incomplete connections in channel table.

2) Bootstrap Server
It allows new peer to join network by assigning it a unique

identifier and establishing its connection with one of the peers
which is already in the network. For a new peer, that peer
becomes its boot peer whom it contacts for joining the network
and establishing connection with other peers. Bootstrap server
has no other role than to help peer in making connection with
its boot peer, this helps to keep server lightweight and makes
the framework more scalable

3) Message Format
Messages exchanged between peers are encoded in JSON

format. It consists of source and destination peer identifiers
which are assigned by the bootstrap server. It contains a type
identifier which helps to differentiate the messages. Depending
on the type of message, it contains other data like signal
information, result of query, callback function etc.

B. Modifications to Chord

We made the following modifications to the base Chord
protocol:

1) Join Boot Peer via Bootstrap server
As shown in the Figure 1, a new peer, aspiring to connect to

the network, contacts the bootstrap server, via a connection
through web socket. With the function call b-register, the new
peer requests a peer id and configuration information from the
bootstrap server, and the server knowing in advance the ids of
peers already connected to the network, sends a unique id via
the p-register call. Also the information about STUN/TURN
servers, size of finger table etc. are sent.

The bootstrap server then facilitates the connection
formation with one of the peers (called the Boot peer) in the
network.

2) Join network.
As shown in the Figure 2, the join network operation has

been divided into four procedures which are asynchronous in
nature. In procedure 1, the new peer attempts to form a
connection with its successor facilitated by its boot peer. So, it
makes a findSuccessor call to its boot peer and also sends its
connection offer with it. The boot peer queries the network to
find its successor, and then forwards the offer to the successor.
The successor replies with its accepted offer to the boot peer
which is forwarded to the new peer. In procedure 2, the new
peer attempts to form a connection with its predecessor in a
similar way. In procedures 3 and 4 it notifies its successor and
predecessor to update their predecessor and successor
respectively.

To decrease the joining time of the new peer to the network,
the bootstrap server picks up the (to be) successor itself as the
boot peer. Thus connection to successor is made by the
bootstrap server itself. Therefore, the set of handshakes
required to establish connection with the successor is not
needed which is in contrast to the erstwhile approach; where a
peer was randomly picked up from the network as the boot peer,
which then facilitated the handshakes for connection with the
successor. The experimental proof has been discussed in

Figure 1. Join Boot Peer via Bootstrap Server

852

Section VI.B.5. It reduces load on the other peers in the network
and also the requests to STUN/TURN server for ice candidates.

3) Asynchronous stabilization procedure
Similar to join operation we have modified the stabilize

operation to make it asynchronous by dividing it into two
procedures. In the procedure 1, the calling node queries for its
successor’s predecessor and attaches a callback to begin second
procedure when it is completion. The second procedure notifies
new successor about its new predecessor which is the calling
node itself.

4) Find Successor Query Strategies
The time taken for a message to propagate in the network

and the time required to generate a new connection offer have
different impact on findSuccessor query made to the network.
The propagation delay is primarily a function of network size
as every message needs to be passed through peers in the
network whereas the load on STUN server determines the time
taken to generate a new offer. Therefore, we have designed two
strategies for implementing findSuccessor operation which
optimize the query response time based on network size and
responsiveness of STUN server. Both strategies have their own
pros and cons.

The first strategy involves generating connection offer and
attaching it with the findSuccessor query. This allows to
directly offer connection offer to the peer which is the successor
of the queried peer id. On the other hand, the second strategy
involves sending the query in the network without offer and on
receiving the result the peer dynamically decides whether it
needs to form connection. If connection does not exists already,
another query is sent with the offer.

Strategy 1 is useful in cases when network is too large the
query forward time becomes more than signal generation time
and thus querying the network twice becomes expensive. It’s

also efficient in scenarios where many new connections are to
be made for example the first call to fixFinger operation.

Although the former strategy requires query to be sent only
once in the network; at times when the calling peer already has
a connection with the successor of the queried peer id, its offer
doesn’t hold any significance thus its generation becomes just
an overhead for stun server and the query. In this case, the
second strategy performs better as it doesn’t attach any offer
with the query. Moreover, strategy 2 is especially beneficial for
periodic fix finger operation because it involves multiple
findSuccesor queries many of which are meant to validate the
existing entries in finger table and ensure the connections are
up; as discussed in Section VI.B.3. Only a few new connections
are required to be made. We have discussed the experimental
results in Section VI.B.4.

V. PROPOSED SOLUTIONS TO THE CHALLENGES

A. Division of join network operation into asynchronous
procedures

We divided the join network operation into separate
procedures that can be called asynchronously. Sequential
execution is guaranteed with the help of the response table,
which stores the results of preceding procedures based on
message ids and function parameter of the procedures that
indicates which procedure is to be called next once this
procedure executes successfully.

B. Reducing dependency on bootstrap server

We make the bootstrap server weakly involved by
facilitating handshakes between new peer and the network via
the boot peer and other peers in the network. The bootstrap
server is only involved in assigning a new, unique id to a new
peer and connecting it with a peer from the network. If this peer
is chosen randomly, it balances the load on peers to facilitate

Figure 2. Join Network Operation

853

handshakes but this requires more messages to be exchanged
between peers. Therefore, we have chosen the (to be) successor
itself as the boot peer.

C. Addressing load on STUN and TURN servers

We use multiple STUN servers to balance load of ICE
candidate requests on them. We use TURN server to route
traffic via relay server. Further, periodically we run a check for
existing connections which are not required, and destroy them.

VI. EVALUATION ON LAN

In this section, we have tested the framework for
functionality, scalability tried to prove the experimental
correctness of the claims that we have made above.

A. Experimental Setup

To evaluate our framework, we use a total of 60 hosts. On
one of the hosts we run both the bootstrap server and a peer.
The other hosts act as peers and connect to the network with the
help of bootstrap server. The hosts are interconnected using
Gigabit Ethernet (GigE) using multiport 100Mbps Layer 2
switches. We use local STUN servers [15]. For 4) and 5), we
assume the STUN server response time to be at least 1000
milliseconds and propagation delay between each pair of peer
to be 50 milliseconds, to resemble the emulation to real life
scenario.

B. Results

1) Time to join network
Currently, the existing WebRTC implementations are

neither feature complete nor do the performance characteristics
match the finalized product [16]. Due to the low-delay LAN
environment, the measured delays almost solely mirror the
actual delay introduced by this framework and the WebRTC
stack. As shown in Figure 3, even for large networks which
have as many as 60 peers, the time taken to join the network is
less than 1000 milliseconds in our prototypical implementation.
This includes propagation delays of messages transmitted, time
taken to generate connection offer, requests sent to resolve
bootstrap server and STUN server and time taken by STUN
server to resolve peer. This shows that the framework is quite
scalable.

Figure 3. Time to Join Network

2) Performance of join network operation
To offer best user experience, the framework must quickly

connect to the network and perform its crucial operations, so
that applications can run on the top of it without much delay.

Figure 4 shows the number of messages exchanged between
peers in join network operation as function of network size in
two different scenarios: with and without fingers. Clearly, with
finger table entries, number of messages exchanged reduces
logarithmically in contrast to linear fashion in case of without
finger table.

Figure 4. Performance of join network operation

3) Number of message exchanges in fix fingers
Although the network functions better with finger table

entries, there is an overhead involved to maintain it.
Periodically, every peer calls the fixFinger operation to become
aware of recent new peer joins and leaves and thus, update
connections. Figure 5 shows that as the network grows, more
messages are required to be exchanged to fix fingers.

Figure 5. Comparing strategies for periodic fix fingers operation

Periodic calls to fixFinger operation performs better with
strategy 2 as fewer connections are required to be established.
Strategy 1 perform poorly because it generates a connection
offer with every query most of which get discarded later on.

854

4) Comparing findSuccessor strategies: tradeoff between
signal generation time and query propagation time

Figure 6 and 7 prove our claims of pros and cons of the two
strategies used to implement findSuccessor operation in
different scenarios. When network is small, performance of
both strategy 1 and strategy 2 are almost same because message
forwarding time is negligible in comparison to signal
generation time. The number of messages to be exchanged is
also comparable.

As the network grows in size, the message forwarding time
becomes much more considerable than signal generation time.
Therefore, strategy 2 that sends queries twice in the network
performs poorly.

Figure 6. Comparing find successor strategies (Join Time)

The sudden improvements in strategy 2 performance can
attributed to the scenarios where the peer already has
connection with the result of findSuccesor query and thus, the
second connection query need not be sent.

Figure 7. Comparing find successor strategies (Messages exchanged)

Another reason why strategy 1 performs better is because when
a new peer joining the network is less likely to have a
connection with other peers. Consequently, it is less likely that
the connection offer will be discarded. Therefore, it is more

efficient to include connection offer in the query itself (strategy
1) rather than sending another query for forming the connection
after the first query (strategy 2).

5) Recommending successor as Boot Peer vs random
selection

Figure 8 shows how join time of new peers is reduced, thus
performance of network is improved, if the bootstrap server
recommends the (to be) successor of the new peer as its boot
peer. This behaviour has been explained in Section IV.B.2. To
resemble the emulation to real life scenario, aforementioned
assumptions hold true here also.

Figure 8. Strategies of recommending Boot peer

VII. EVALUATION ON INTERNET

A. Experimental Setup

We evaluate our framework on global scale using Amazon
Web Services and Google STUN [17] servers. We deploy a
total of thirty peers on eight Amazon EC2 [18] micro instances
at different location across the globe (Figure. 9). On one of the
instances at Singapore, we run the bootstrap server and the other
instances at different locations act as peers and connect to the
network randomly with the help of bootstrap server. On each
instance multiple we run multiple peers. To check the
correctness of framework we also destroyed few peers
randomly in between the experiment.

Figure 9. Peer Locations across the globe

855

B. Results

1) Comparing find successor strategies on Internet
As shown in Figure 10, the trends between strategies is

similar to LAN but the difference is inflated from 1000
milliseconds to 4000 milliseconds approximately.

2) Join Network Time in LAN and Internet

The difference in join network time on LAN and Internet

owes to multiple reasons: time required to contact STUN
servers, packet propagation time, signal generation time, other
traffic in network etc.

VIII. FUTURE SCOPE

Because JavaScript engines have only a single thread,
asynchronous events are forced to be queued for execution.
Queueing in JavaScript varies from browser to browser. Since
the network is dynamic, messages may be delivered out of order
to a peer and this can lead to errors.

Security issues and privacy concerns of users have not been
investigated.

IX. CONCLUSION

We have tried to leverage the benefits of recent technologies
like NodeJs and WebRTC of modern browsers in P2P based
content sharing framework. We implemented the Chord
protocol for our test environment but other protocols like Pastry
or CAN are certainly possible, too. We are waiting for the
WebRTC technology to become stable and mature for further
explorations in other protocols.

X. REFERENCES

[1] Ian Clarky, Oskar Sandberg, Brandon Wiley, Theodore W.
Hong: Freenet: A Distributed Anonymous Information Storage
and Retrieval System 1999.
[2] Stoica, Ion, et al. "Chord: A scalable peer-to-peer lookup
service for internet applications." ACM SIGCOMM Computer
Communication Review 31.4 (2001): 149-160.
[3] Jennings, Cullen et al. "Resource location and discovery
(reload) base protocol." REsource (2014).
[4] Vogt, Christian, Max Jonas Werner, and Thomas C.
Schmidt. "Leveraging WebRTC for P2P content distribution in
web browsers." Network Protocols (ICNP), 2013 21st IEEE
International Conference on. IEEE, 2013.
[5] L. Zhang, F. Zhou, A. Mislove, and R. Sundaram, “Maygh:
Building a CDN from Client Web Browsers,” in Proc. of 8th
ACM European Conference on Computer Systems
(EuroSys’13). New York, NY, USA: ACM, 2013, pp. 281–294.
[6] D. Dias, "webrtc-chord," [Online]. Available:
http://www.npmjs.com/package/webrtc-chord.
[7] Werner, Max Jonas, Christian Vogt, and Thomas C.
Schmidt. "Let Our Browsers Socialize: Building User-Centric
Content Communities on WebRTC. “Distributed Computing
Systems Workshops (ICDCSW), 2014 IEEE 34th International
Conference on. IEEE, 2014.
[8] "Peer 5: Sharefest;" [Online]. Available:
https://www.sharefest.me/

Figure 11. Comparing Join Network Time in Network Scenarios

Figure 10. Comparing find successor strategies on Internet

856

[9] Baker, Matthew, F. Russ, T. David and W. Adam,
"Implementing a Distributed Peer to Peer File Sharing System
using CHEWBACCA--CHord, Enhanced With Basic
Algorithm Corrections and Concurrent Activation," 2003.
[10] Werner, Max Jonas, and Christian Vogt. "Implementation
of a Browser-based P2P Network using WebRTC." Hamburg
University of Applied Sciences, Technical Report, January
(2014).
[11] “Introduction to HTML5 Web Workers: The JavaScript
Multi-threading Approach” [Online]. Available:
https://msdn.microsoft.com/en-us/hh549259.aspx
[12] “Javascript Madness: The Javascript Sleep Deficiency”
[Online]. Available: http://unixpapa.com/js/sleep.html
[13] "WebRTC in the real world: STUN, TURN and signaling"
[Online]. Available:
http://www.html5rocks.com/en/tutorials/webrtc/infrastructure/
[14] "Javascript Session Establishment Protocol draft-ietf-
rtcweb-jsep-03" [Online]. Available:
http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-03#section-1.1
[15] “Stuntman - open source STUN server” [Online].
Available: http://www.stunprotocol.org/
[16] Werner, Max Jonas, and Christian Vogt. "Implementation
and Evaluation of a DHT-based content distribution system
using WebRTC."
[17] Google STUN Servers [Online]. Available:
http://stun.l.google.com:19302
 [18] “Elastic Compute Cloud (EC2) Cloud Server & Hosting –
AWS” [Online]. Available: https://aws.amazon.com/ec2/

857

