
ADDRESSING CHALLENGES IN
BROWSER BASED P2P CONTENT
SHARING FRAMEWORK USING
WEBRTC

Shikhar Vashishth, Yash Sinha, Dr. K Hari Babu

Birla Institute of Technology and Science, Pilani, India

khari@pilani.bits-pilani.ac.in

1

AGENDA

• NodeJs, Socket.io, WebRTC => Improved efficiency and scalability

• Peer-to-peer architecture => elimination of centralized dependency, better scalability etc.

• Why not couple the benefits?

• But there are challenges!
• Let’s try out implementing Chord protocol on Web Browsers and tackle the challenges

CHALLENGES

• Lack of full-fledged threading/concurrency support in the Javascript

language

– a long-running process freezes the main window

– no provision for sleep in JavaScript

– Unpleasant user experience

– Web workers: communication based on event driven messaging, ensuring

sequential execution is a headache

3

CHALLENGES

• Chord protocol’s challenges

– Dependency on bootstrap server

• connection of new peers to the existing network

• facilitation of handshakes and network stabilization

– Not sufficiently asynchronous

• reliability on synchronous loading which hinders browser interactivity

because of availability of a single main thread

4

ADDRESSING THE CHALLENGES

• Chord protocol procedures divided into subprocedures that can be called

asynchronously

• Dependency on bootstrap server reduced

– New peer can join network with the help of other peers in network

– Network stabilization in a decentralized way

• Different connection strategies for different network conditions

– slow STUN server vs network size

– preferring successor as Boot Peer vs any random peer

MAKING CHORD PROCEDURE
ASYNCHRONOUS: JOIN NETWORK

6

New Peer Boot Peer Successor

Step 1

generate signal

findSuccessor(self, signal)
forward offer

forward reply

connected to successor

Step 2
generate signal

findPredessor(successor, signal)

Predecessor

forward offer

forward reply
connected to predecessor

Step 3 notifyPredecessor(self)

Step 4 notifySuccessor(self)

notified

notified

LEGEND

Existing Connection
New Connection

DEPENDENCY REDUCED:
JOIN BOOT PEER
• Connection handshakes

– New peer

• Generates connection offer

• Sends it to the peer over the

network using bootstrap

server

– Receiver

• generates reply

• Sends it via network

– New peer accepts connection

• Henceforward, direct

connectivity is established

7

Boot Peer

Handshakes with bootstrap server

Peer

Handshakes with Boot Peer

Channel Manager

Bootstrap Server

LEGEND

p: sent to peer

b: sent to bootstrap

b-register

socket.io connect()
socket.io connect

p-register

b-forward-offer
p-forward-offer

b-forward-reply
p-forward-reply

STRATEGIES TO QUERY
THE NETWORK
Strategy One Strategy Two

WebRTC connection offer along with the peer

discovery query

Discovering peer in the network without WebRTC

connection offer

Offer accepted or discarded based on whether

connection already exists

If connection is not present, send another query

with offer

Efficient when network size is large:

query forward time >> offer generation time

Therefore, querying the network twice becomes

expensive

Efficient at times when the calling peer already has

a connection with the queried peer.

Therefore, no overhead of offer generation time

Efficient in scenarios where many new connections

are to be made e.g., populating finger table entries

after joining network

Beneficial for periodic operations for ensuring

network stability. Few new connections

are required to be made.

Inefficient when STUN server is overloaded because

offer generation time >> query forward time

Partially better for the cases where peer already has

a connection (therefore independent of STUN load)

COMPARING STRATEGIES
ONE VS TWO

9

• Small Network (0-5 peers)

– message forwarding << offer generation time

– ST1 ≈ ST2 (equal time taken)

• As the network grows in size

– message forwarding > offer generation time

– ST1 < ST2, as ST2 sends queries twice

• At times,

– When connection already exists

– ST1 > ST2, due to overhead of offer generation

PERIODIC OPERATIONS

• Since few new connections are

required to be made for periodic

operations (such as for ensuring

network stability),

– ST2 performs better that ST1

PREFERRING SUCCESSOR AS
BOOT PEER
• Joining network needs connection with

successor and predecessor

• Chord selects a random peer as boot

peer which facilitates connection with

successor and predecessor

• But in modified Chord, bootstrap

choses successor as boot peer

• Therefore,

– forming connection with random peer

is not required

– join time of new peers is reduced, thus

performance of network is improved

EVALUATION ON GLOBAL SCALE

• Deployed a total of thirty peers on eight

Amazon EC2 micro instances at different

location across the globe

– At Singapore, we run the bootstrap

server.

– On each instance multiple we run

multiple peers.

ONE VS TWO ON GLOBAL SCALE

ANY QUESTIONS?

14

THANK YOU

15

