
A Browser-based Distributed Framework for

Content Sharing and Student Collaboration

Shikhar Vashishth 1, Yash Sinha1, and K Hari Babu1

1 Dept. of Computer Science and Information Systems,

Birla Institute of Technology and Science, Pilani, India.

{f2012436, f2012365, khari}@pilani.bits-pilani.ac.in

Abstract. The utilization of the networks in education system has become in-

creasingly widespread in recent years. WebRTC has been one of the hottest topics

recently when it comes to Web technologies for distributed systems as it enables

peer-to-peer (P2P) connectivity between machines with higher reliability and bet-

ter scalability without the overhead of resource management.

In this paper, we propose a browser based, asynchronous framework of a P2P

network using distributed, lookup protocol (Chord), NodeJS and RTCDataChan-

nel; which is scalable and lightweight. The design combines the advantages of

P2P networks for better and sophisticated education delivery. The framework

will facilitate students to share course content and discuss with fellow students

without requiring any centralized infrastructure support.

Keywords: Chord, Peer-to-peer, NodeJS, WebRTC, RTCDataChannel, De-

centralized Distributed Systems

1 Introduction

Several technologies like computing, database systems, networking and web technol-

ogy play an important role in the field of education technology. In the field of network-

ing, several advancements have led to boom in online education. Beginning with tradi-

tional centralized systems, the trend has moved on to decentralized distributed systems.

The use of such distributed systems promises several advantages, such as higher relia-

bility and better scalability. The peer-to-peer technology is superior to traditional client-

server model because it doesn’t require setting up a third party server which makes it

much more economical and practical in many situations. The peer-to-peer architecture

offers the promise of harnessing the vast number of nodes connected to the network.

Other significant features are redundant storage, permanence, efficient data location,

anonymity, search, authentication, and hierarchical naming. Thus, this technology can

be highly beneficial in supporting teachers and students to collaborate and share infor-

mation together within a community.

The contribution of this paper is design and successful implementation of a browser

based, asynchronous framework of a P2P network using distributed, lookup protocol

(Chord [1]), NodeJS and RTCDataChannel. We have chosen Chord as it provides effi-

cient lookup in a dynamic peer-to-peer system with frequent node arrivals and depar-

tures. Additional features can be layered on the top of the framework based on the prac-

tical usage to gain robustness and scalability. We have also illustrated some of the cases

wherein this framework can be beneficial.

Current frameworks are not very suitable for web applications because the web

browsers are generally single threaded. We enlist the reasons in a subsequent section

and advocate the need for a framework based on event driven programming paradigm

and asynchronous calls for a web browser. We also improve the fault tolerance by mak-

ing dependence on the bootstrap server weaker, which is a point of network failure.

Therefore, this framework helps P2P technology to enter in more areas.

We explain the implementation details of the framework in the rest of the paper.

Section II compares this asynchronous implementation to related work. Section III pre-

sents the reasons for this framework. Section IV of the paper describes the base Chord

protocol, notations used, the bootstrap server, join operations of new peers, data struc-

tures used and handling of RTCDataChannel connections between peers. Section V

presents the implementation details of the framework. Section VI highlights certain

ways in which this work can be used in to enhance the learning experience in a com-

munity. Finally, we conclude in Section VII.

2 Related Work

CHEWBACCA (CHord, Enhanced With Basic Algorithm Corrections and Concurrent

Activation) [2] is a P2P network framework in Java using sockets based messaging.

Although, this framework uses synchronous calls, it is not suitable for event driven,

non-blocking systems like web-browsers. WebRTC-Chord is an asynchronous imple-

mentation of Chord protocol on Node Package Manager [3]. Although made for web

browser, WebRTC-Chord is not as efficient because it doesn’t keep bootstrapping

server lightweight. The server stores all information about the peers and helps them to

update their entries as the network changes dynamically over time. Thus it is not as

scalable as this framework. This framework reduces the involvement of bootstrap

server only up to the initial phase of joining network for a peer. Establishing connection

Fig1. Layers in the designed framework

with other peers later doesn’t involve bootstrap server at all. joonion-jchord [4] is sim-

ple implementation of Chord protocol written in Java is implemented for single virtual

machine not for multiple systems.

3 Need for Framework

3.1 Web browsers incompatible with synchronous calls

Current frameworks of Chord are in C++ and Java and they use synchronous calls and

the socket programming APIs. Processes, facilitated by the kernel, can wait for the syn-

chronous calls to return, by getting suspended. Also threads can be used for foreground

and background tasks. But synchronous calls in a web browser framework are discour-

aged for three reasons. Firstly, browsers are built using event driven programming par-

adigm, where asynchronous calls are suitable. Secondly, spinning or busy waiting locks

the browser and other processes start crawling. [5] Thirdly, most browsers are single

threaded and don’t do anything on screen while Javascript code is running. [6] This

hampers user experience badly. So, a need for an asynchronous framework was felt,

designed and implemented.

3.2 Weakly Connected Bootstrap Server

There are frameworks, wherein the bootstrap server is actively involved to connect new

peers and stabilize the network. The server stores all information about the peers and

helps them to update their entries as the network changes dynamically over time. [3]

Thus, there is a point of failure in the network, if the bootstrap server fails, new peers

cannot join and the network cannot be stabilized. New RTCDataChannel connections

are dependent on server to facilitate handshakes between the new peer and the network.

This framework, however, makes the dependence on the bootstrap server weaker by

facilitating handshakes between new peer and the network via the boot peer and other

peers in the network. The bootstrap server is only involved in assigning a new, unique

id to a new peer and connecting it with a peer from the network chosen randomly. This

also balances the load on peers to facilitate handshakes. But this requires more mes-

sages to be sent, forwarded and accepted between peers in an asynchronous way. We

have modified the function calls of the Chord protocol [1], to accommodate these

changes.

4 Framework Design

4.1 Base Chord Protocol

Chord is protocol for peer-to-peer distributed hash table. It assigns each peer an m-bit

identifier using base hash function such as SHA-1. Each peer maintains small amount

of routing information that makes chord scalable by avoiding every peer to know about

every other peer. In N-peer network each peer maintains information about only Ο(log

N) other peers and a lookup requires Ο(log N) messages. Nodes and keys are arranged

in an identifier circle that has at most 2m peers, ranging from 0 to 2m-1.

Table 1. Notations Used

Notation Definition

boot Peer First peer (in network) with which a connection is established

Pred Predecessor of peer in network

Succ Successor of peer in network

Id Unique Identifier of a peer

succPred Predecessor of peer’s successor

CBF Function to be called when remote call is complete

signal Signaling data of peer which is required to establish connection

Path Stores the route which message took to reach destination

4.2 The Bootstrap Server:

It allows new peer to join network by establishing its connection with one of the peer

which is already in network. For a new peer, that peer becomes its boot peer whom it

contacts for joining the network and establishing connection with other peers. Bootstrap

server has no other role than to help peer in making connection with its boot peer, this

helps to keep server light weight and makes the framework more scalable. It is imple-

mented using hapi framework. [7]

4.3 Peer Joins

Whenever a new peer joins a network, these invariants should be kept. It must have

connection with at least one peer in network (boot peer). Each peer's successor points

to its immediate successor correctly. Each key is stored in successor(k). Each peer's

finger table should be correct. If finger table entries are not correct than query cost

becomes Ο(n) instead of Ο(log(n)).

Following steps are involved for making a new peer join network. Initialize peer -

assign it an identifier, initialize finger table etc. Find the successor of new peer by que-

rying bootstrap peer. Find the predecessor of new peer by asking peer’s successor to

send information about its predecessor. Notify other peers to update their successor,

predecessors to maintain correctness of the framework. Calling fixFinger operation af-

ter regular interval to keep finger table entries up to date. Fix Finger operation involves

calling findSucc operation for each finger table entry taking Ο(mlog(n)) time to update

entire finger table.

4.4 Connection objects: the special case

Chord protocol specification assumes that a peer can connect to a peer as long as it has

its peer id. But in the real world a connection needs to be established so that messages

can be sent and received. We have used WebRTC’s RTCDataChannel API to connect

peers. The npm module Simple Peer [8] has been used to connect two machines. The

initial handshake to connect to boot peer is facilitated by the bootstrap server, whereas

subsequent handshakes to connect to other peers are handled by boot peer and other

peers (as and when they get connected). The signals are sent from the source peer in

the findSucc and findPred functions. The function calls hop over peers till a peer finally

resolves the answer (some peer) of the given function call. This peer forwards the func-

tion call to the answer peer, which accepts the signal of the source peer. It then sends

its own signal to the source peer, via the same path by which the function call arrived

at it. Thus, the handshake is complete.

4.5 Implementation Details

Following data structures were used to store various information about the state of

the network and connection objects. Response Table is an associative data structure

maps message id to response received on making a remote call. Waiting Connection

Table stores information about connection with which peer is currently in process of

making connection. Connected Connection Table stores connection information about

peer with which the peer already has established connection. Finger Table contains m

entries of peers with which peer has connection. It helps to avoid linear search. The ith

entry of peer n will contain successor ((n + 2i-1) mod 2m). The first entry of finger

table is the peer's immediate successor. Using finger table each query operation in net-

work can be completed in Ο(log(n)).

4.6 Pseudo Code

joinNetwork. This is asynchronous implementation of joinNetwork operation which

allows it to run in non-blocking, asynchronous frameworks such as NodeJS. This works

same as synchronous version but is based on event driven programming paradigm.

joinNetworkSynchronous():

 n.pred = null; n.succ = b.findSucc(n.id);

 n.succPred = n.succ.getPre(); n.stabilize();

 if n.succPred == null: n.succ.stabilize();

 else: n.succPred.stabilize();

joinNetworkAsynchronous(state, data):

case 0: n.pred = null; msgId = respTable.new();

 n.initFindSucc(b.id, n.id, msgId, "next state")

case 1: n.succ = respTable.get(msgId);

 msgId = respTable.new();

 n.initFindPred(n.succ, msgId, "next state")

case 2: n.succPred = respTable.get(msgId);

 if n.succPred!=null AND n.succPred ∈(n.Id, n.succ]
 n.succ = n.succPred;

 n.notifyPred(n.succ, n.id, msgId, "next state");

case 3: if n.succPred == null:

 n.stabilize(n.succ, msgId, "next state");

 else: n.stabilize(n.succPred, msgId, "next state");

A peer executes initFindSucc and initFindPred to generate and attach signal before

calling findSucc and findPred respectively. findSucc operation asks destPeer to tell

successor of desired id. destPeer can contact other peers if it doesn’t know the response

to the query. When desired peer is found then signalling data of peer n is passed to that

peer to allow it to form connection with it. The information about the order in which

peers are contacted is stored in path variable of the call. It is used for returning final

result and signalling data of successor of id to peer n. Once response is reaches the peer

callBackFunc is invoked. findPred operation gives the immediate predecessor of given

peer. When the predecessor of the desired peer is found, signaling data of peer is given

to it which allows it to form connection with the calling peer. When peer calls noti-

fyPred it asks destPeer to update the value of its predecessor to the given value of

predecessor and CBF is called when this update request is complete. When a new peer

joins the network then stabilize operation is called on given peer, its successor and

predecessor to allow them to correct their predecessor and successor entries. This op-

eration is essential for the framework to maintain its correctness. fixFinger. This oper-

ation is invoked by peers at regular intervals to update the entries of their finger tables

which allows network to answer query in O(log(n)). If entries in finger table are not

correct, query is resolved through successors which takes Ο(n) time to respond.

findSucc(destId, id, path, msgId, CBF):

 if destId == n.id

 if n.id == n.succ: exec(CBF);

 elif id ∈ (n.id, n.succ]: n.succ.acceptSignal()
 elif n.closePredFin(id)==n.id:

 n.findSucc(n.succ, id, path, msgId, CBF, signal);

 else:n.findSucc(n.closePredFin(id),id,path,msgId,CBF);

 else: path.append(n.id)

 destId.findSucc(destId, id, path, msgId, CBF, signal);

findPred(destId, path, msgId, CBF, signal):

 if destId == n.id: if n.id == n.succ: exec(CBF)

 else: n.pred.acceptSignal()

 else: destId.findPred(destId, path, msgId, CBF, signal)

notifyPred(destId, pred, path, msgId, CBF):

 if destId == n.id: n.pred = pred;exec(CBF);

 else: destId.notifyPred(destId, pred, path, msgId, CBF);

stabilize(destId, path, msgId, CBF):

 if destId==n.id:

 n.succPred=n.initFindPred(n.succ, msgId, "next state");

 if n.succPred == null AND n.succPred ∈ (n.id, n.succ]:
 n.succ = n.succPred

 n.notifyPred(n.succ, n.id, msgId, next state");

 else: destId.stabilize(destId, path, msgId, CBF);

5 Networking Education

P2P technology is superior to traditional client-server model because it doesn’t require

setting up a third party server which makes it much more economical and practical in

many situations. Setting a third party server involves expense on its security, mainte-

nance, performance. It doesn’t allow network to expand beyond a limit but such limi-

tations are easily overcome by P2P technology because there is no central dependency

on which whole network has to rely and security is also simplified because files’ loca-

tion are invisible to P2P peers and thus remains protected.

This framework doesn't require any kind of setup or installation on peer's system.

Thus, web browsers can be part of the network, and very little expertise is required to

create and join a network. We have illustrated some of the cases wherein this frame-

work can be beneficial: Classroom Community, Off-campus Distance Education,

Workflow management, Peer based Information Retrieval. Details have been skipped

due to shortage of space.

6 Conclusion

Modern day browsers are single threaded applications which cannot support synchro-

nous calls to remote hosts. Busy waiting is not a feasible solution. We have explored

the plausibility of a browser based Peer to Peer Network. This paper presents an asyn-

chronous framework for P2P network built using distributed and lookup protocol called

Chord, NodeJS and RTCDataChannel. Benefits of P2P networks include scalability,

redundant storage, permanence, efficient data location, anonymity, search, authentica-

tion, and hierarchical naming. This allows for the framework to be easily used for pro-

moting education in multiple scenarios. The framework enables institutions and stu-

dents to share course content and discuss without overhead of resource management.

The framework design includes scope for improvement. Security enhancements such

as encryption can prevent a malicious peer to affect the network. The framework can

be a part of browser integration such as plugin or extension.

7 References

1. Stoica, Ion, M. Robert, K. David, K. M. Frans and B. Hari, "Chord: A scalable peer-to-peer

lookup service for internet applications," ACM SIGCOMM Computer Communication

Review, vol. 31, no. 4, pp. 149-160, 2001.

2. Baker, Matthew, F. Russ, T. David and W. Adam, "Implementing a Distributed Peer to Peer

File Sharing System using CHEWBACCA--CHord, Enhanced With Basic Algorithm

Corrections and Concurrent Activation," 2003.

3. D. Dias, "webrtc-chord," [Online]. Available: http://www.npmjs.com/package/webrtc-chord.

4. "joonion-jchord," [Online]. Available: http://code.google.com/p/joonion-jchord/.

5. J. Wolter, "Javascript Madness: The Javascript Sleep Deficiency," [Online]. Available:

http://unixpapa.com/js/sleep.html.

6. H.-G. Michna, "Sleep or wait in JavaScript | Windows Problem Solver," [Online]. Available:

http://winhlp.com/node/633.

7. "hapi.js," [Online]. Available: http://hapijs.com/.

8. F. Aboukhadijeh, "simple-peer," [Online]. Available:

http://www.npmjs.com/package/simple-peer.

